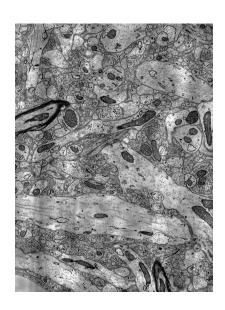
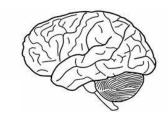
Segmentation of Electron Microscopy Images in Connectomics



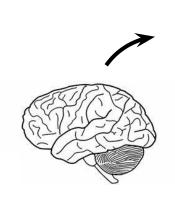
Brian Matejek Advisor: Hanspeter Pfister

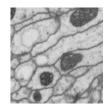
Goal: Extract the wiring diagram from a brain

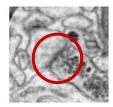


Goal: Extract the wiring diagram from a brain

Nano-resolution Imaging

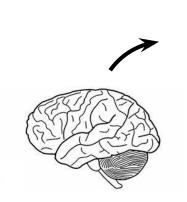


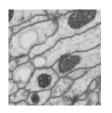


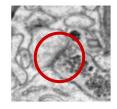


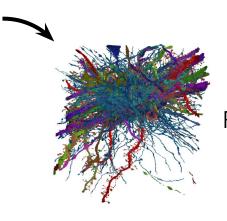
Goal: Extract the wiring diagram from a brain

Nano-resolution Imaging



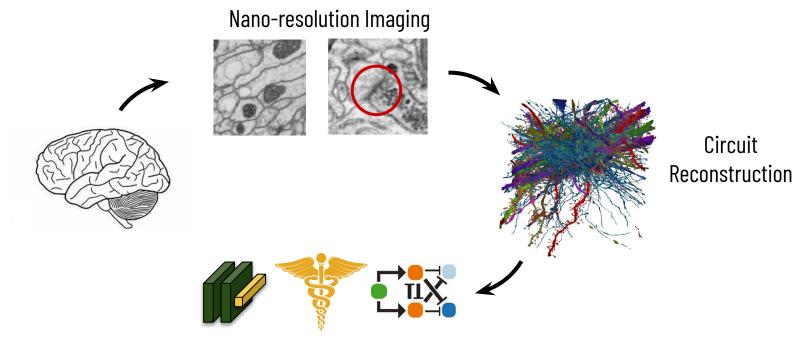






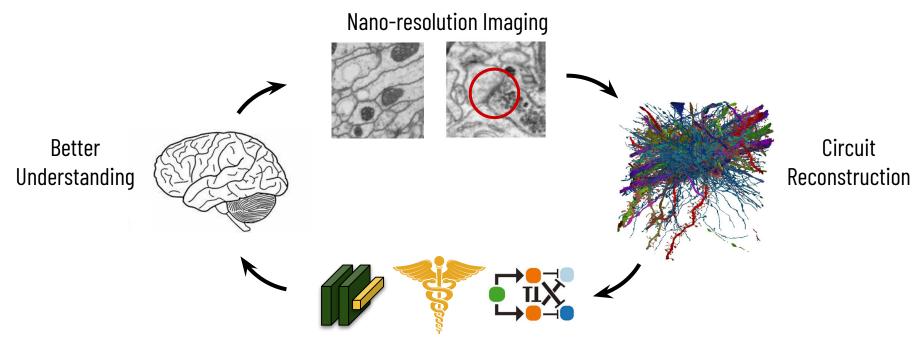
Circuit Reconstruction

Goal: Extract the wiring diagram from a brain



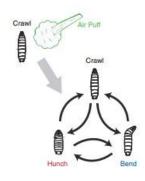
Improved Neural Networks, Medicine, Models

Goal: Extract the wiring diagram from a brain



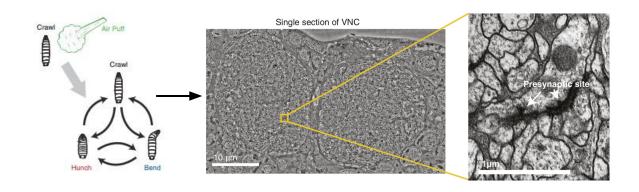
Improved Neural Networks, Medicine, Models

Goal: Extract the wiring diagram from a brain



Behavior

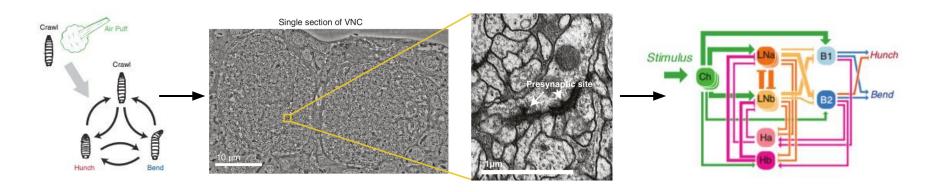
Goal: Extract the wiring diagram from a brain



Behavior

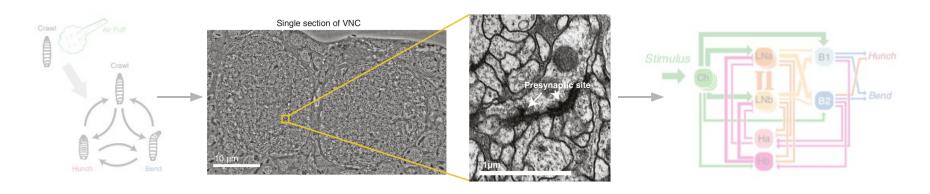
Structure

Goal: Extract the wiring diagram from a brain

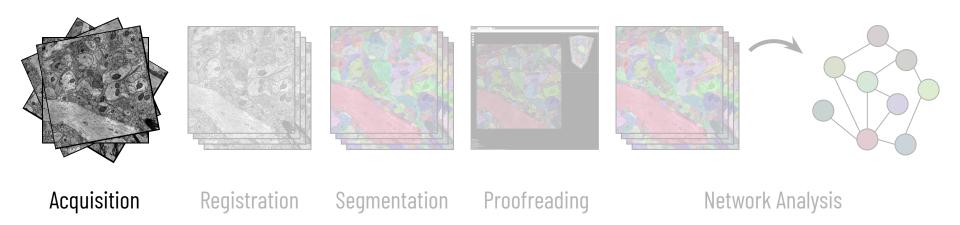


Behavior Structure Function

Goal: Extract the wiring diagram from a brain



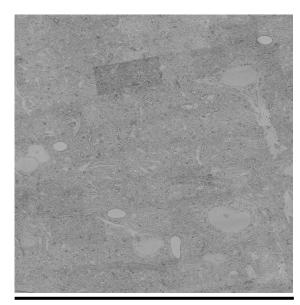
Behavior Structure Function



Suissa-Peleg et al., Automatic Neural Reconstruction from Petavoxel of Electron Microscopy, Microscopy and Microanalysis 2016 Schalek et al., Imaging a 1 mm³ Volume of Rat Cortex Using a MultiBeam SEM, Microscopy and Microanalysis, 2016

Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

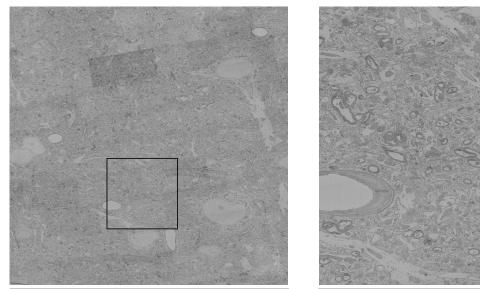


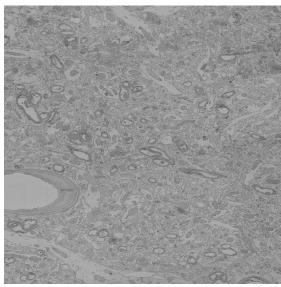
100 µm

Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

Can image 1 mm³ of image data (2 PB) in 6 months





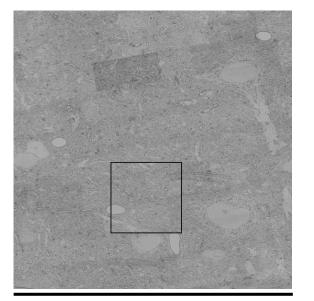
100 µm

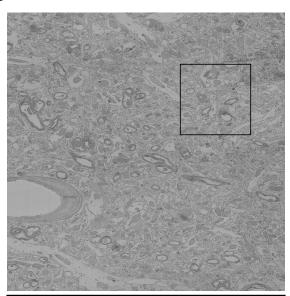
25 µm

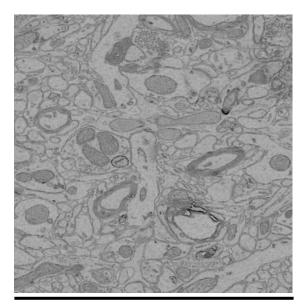
Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

Can image 1 mm³ of image data (2 PB) in 6 months



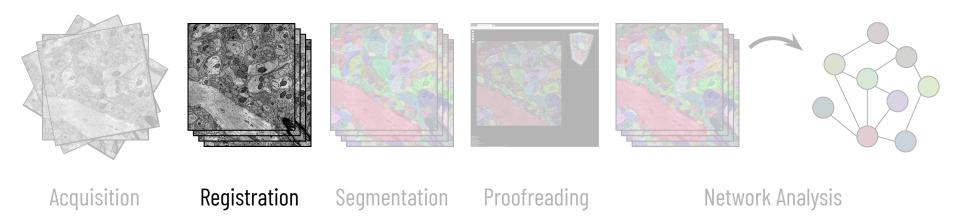




100 µm

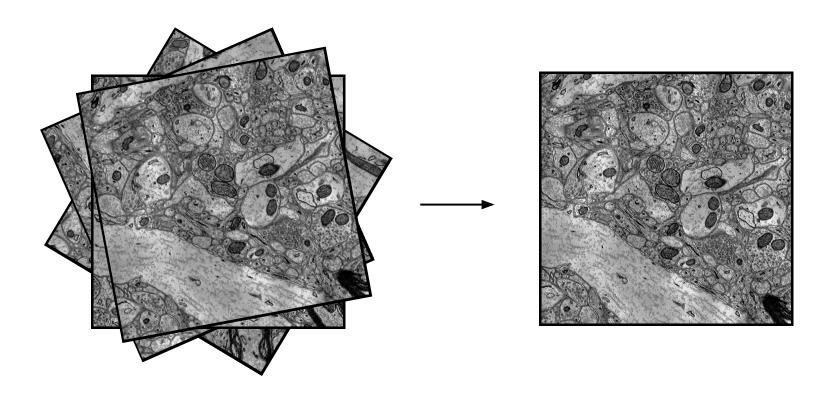
25 µm

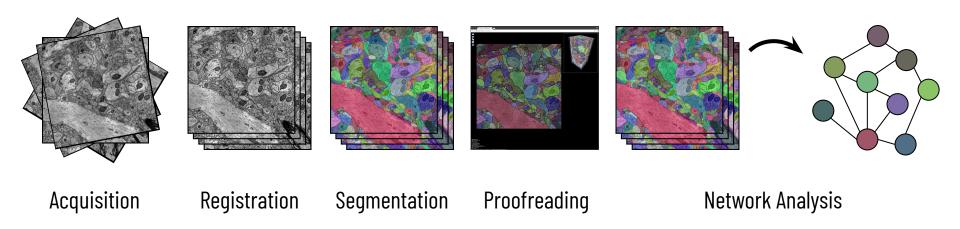
6250 nm



Saalfield et al., Elastic Volume Reconstruction from Series of Ultra-thin Microscopy Sections, Nature 2012 Khairy et al., Joint Deformable Registration of Large EM Image Volumes: A Matrix Solver Approach, 2018

Registration



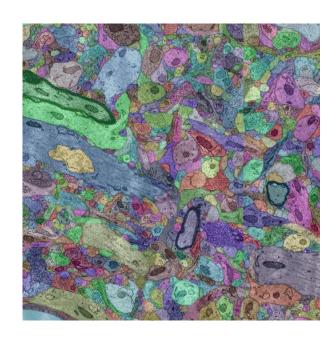


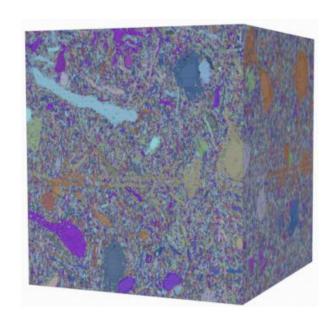
Nunez-Iglesias et al., Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLoS ONE 2014 Cicek et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016 Januszewski et al., Flood-Filling Networks, 2016

Zeng et al., DeepEM3D: Approaching Human-Level Performance on 3D Anisotropic EM Image Segmentation, Bioinformatics 2017 Pape et al., Solving Large Multicut Problems for Connectomics via Domain Decomposition, ICCV 2017 Lee et al., Superhuman Accuracy on the SNEMI3D Connectomics Challenge, 2017

Label Volumes

Two voxels have the same label only if they belong to the same neuron

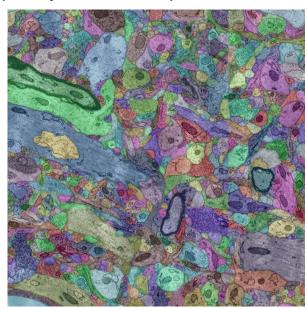


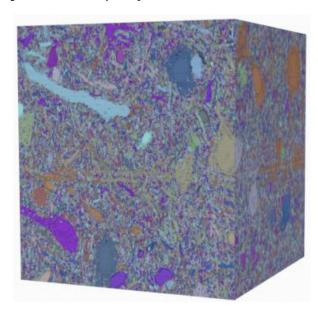


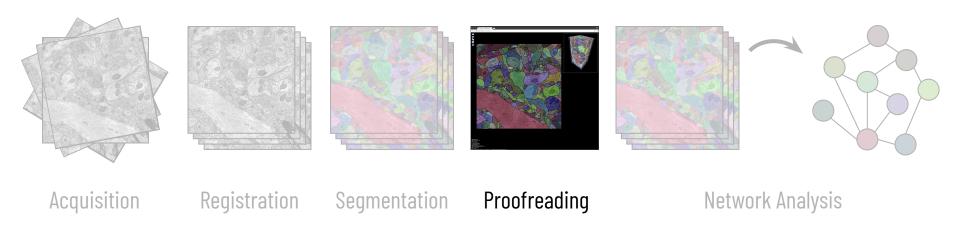
Label Volumes

Two voxels have the same label only if they belong to the same neuron

Typically use 64 bits per voxel to label each segment uniquely



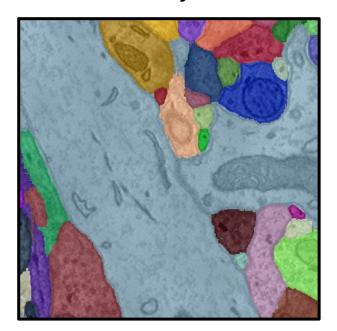




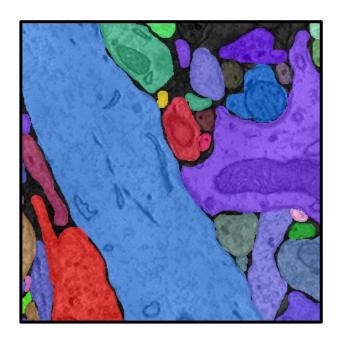
Haehn et al., Design and Evaluation of Interactive Proofreading Tools for Connectomics, IEEE VIS 2014 Zung et al., An Error Detection and Correction Framework for Connectomics, NIPS 2017 Haehn et al., Guided Proofreading of Automatic Segmentations for Connectomics, CVPR 2018

Merge Errors

Automatic Segmentation

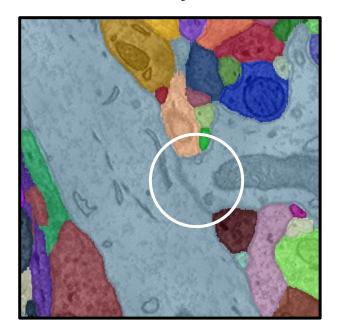


Ground Truth

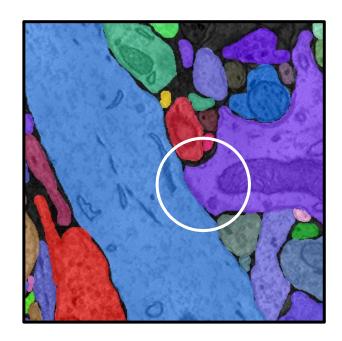


Merge Errors

Automatic Segmentation

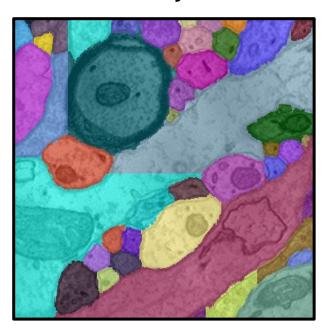


Ground Truth

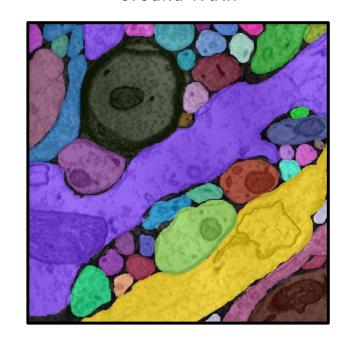


Split Errors

Automatic Segmentation

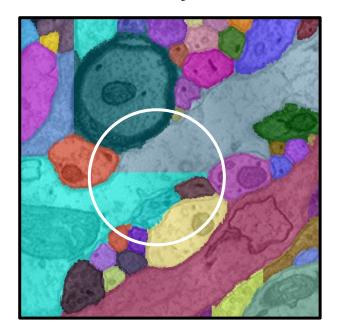


Ground Truth

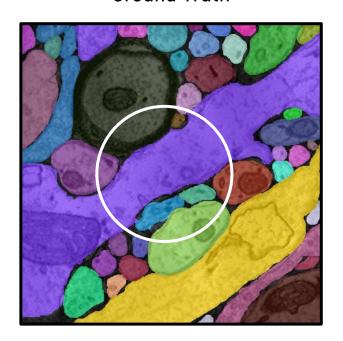


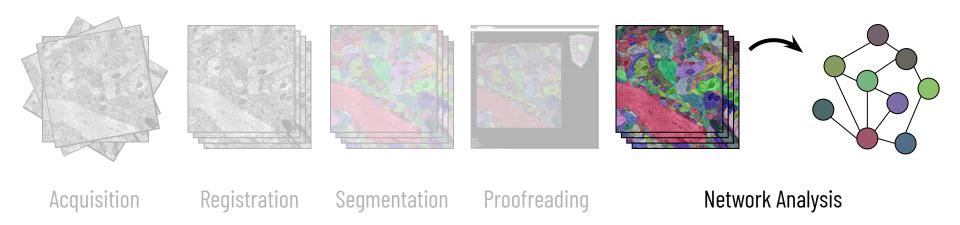
Split Errors

Automatic Segmentation



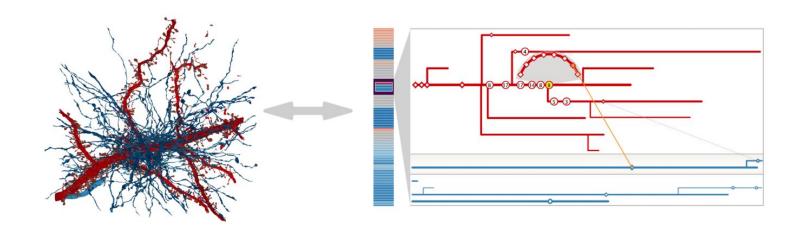
Ground Truth

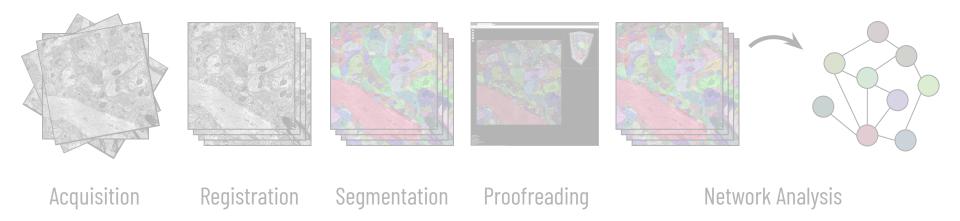




Sorger et al., neuroMAP - Interactive Graph-Visualization of the Fruit Fly's Neural Circuit, BioVIS 2013
Al-Awami et al., NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity, IEEE VIS 2014
Haehn et al., Scalable Interactive Visualization for Connectomics, MDPI Informatics 2017

Network Analysis





Registration

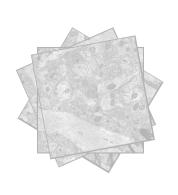
Acquisition

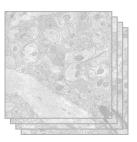
Compression I will be a second of the compression of the compression

Proofreading

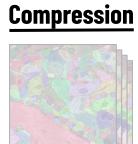
Network Analysis

Segmentation



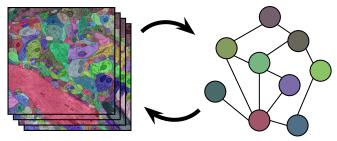


Registration

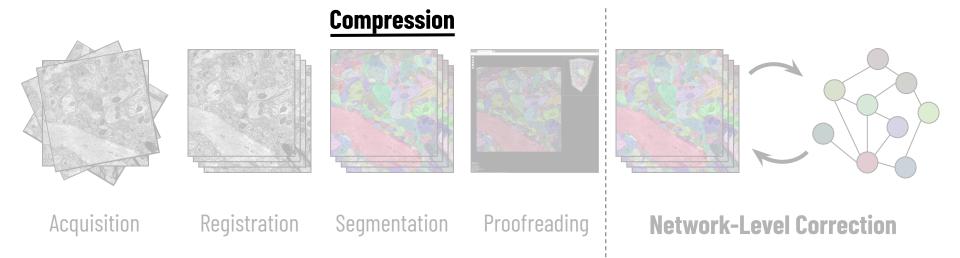


Segmentation

Proofreading

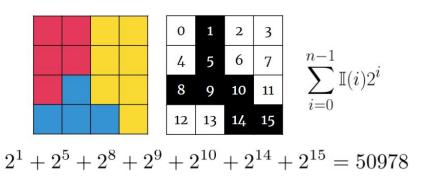


Network-Level Correction

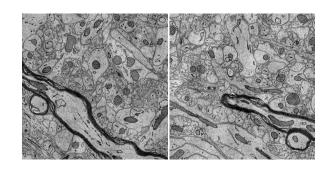


Compresso: Efficient Compression of Segmentation Data for Connectomics

Brian Matejek, Daniel Haehn, Fritz Lekschas, Michael Mitzenmacher, Hanspeter Pfister



Increasing Scales of Challenge Datasets SNEMI



210 MB

2013

Increasing Scales of Challenge Datasets

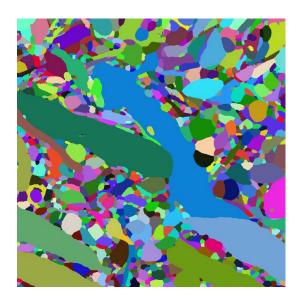
SNEMI **CREMI** 1.2 GB 210 MB 2013 2016

Increasing Scales of Challenge Datasets

SNEMI **CREMI** FIB-25 210 MB 1.2 GB 15.7 GB 2013 2016 2017

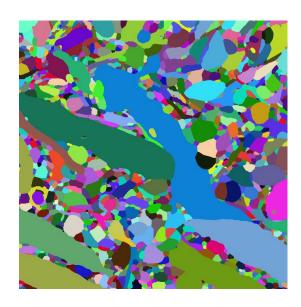
Connectomics Label Volumes

Large invariant regions without natural relationships between labels



Existing Compression Schemes

General-purpose compression schemes BZ2, GZIP, LZMA, LZW, ZLIB, etc. Not optimized for these unique label volumes



Existing Compression Schemes

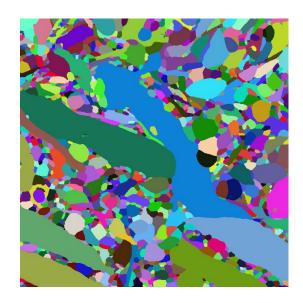
General-purpose compression schemes BZ2, GZIP, LZMA, LZW, ZLIB, etc. Not optimized for these unique label volumes

Image compression schemes

JPEG, JPEG2000, PNG, etc.

Rely on frequency reduction and value prediction

Not useful with large invariant regions



Existing Compression Schemes

General-purpose compression schemes BZ2, GZIP, LZMA, LZW, ZLIB, etc. Not optimized for these unique label volumes

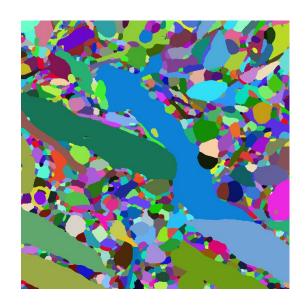
Image compression schemes

JPEG, JPEG2000, PNG, etc.

Rely on frequency reduction and value prediction

Not useful with large invariant regions

Video compression schemes H.264, H.265, MPEG, etc. Color space optimizations do not translate



Existing Compression Schemes

General-purpose compression schemes
BZ2, GZIP, LZMA, LZW, ZLIB, etc.
Not optimized for these unique label volumes

Image compression schemes

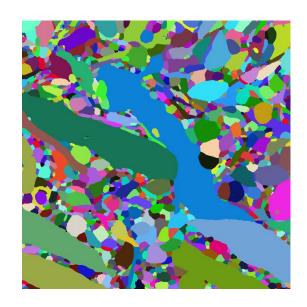
JPEG, JPEG2000, PNG, etc.

Rely on frequency reduction and value prediction

Not useful with large invariant regions

Video compression schemes H.264, H.265, MPEG, etc. Color space optimizations do not translate

Neuroglancer compression scheme Specifically designed for label volumes



Neuroglancer

Specifically designed for label volumes

Exploits homogeneity by creating small blocks with N labels Reduces local entropy to $\log_2(N)$ Lookup tables decode the values [0, N) to the original 64-bit labels

Blocks are typically 8x8x8 voxels each

https://opensource.google.com/projects/neuroglancer

Compression

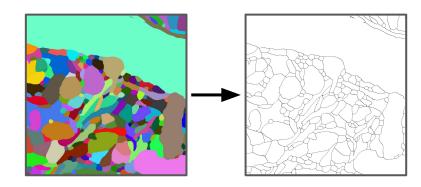
Compresso Overview

Lossless compression

Compresso Overview

Lossless compression

Decouple per-segment shapes and per-pixel labels

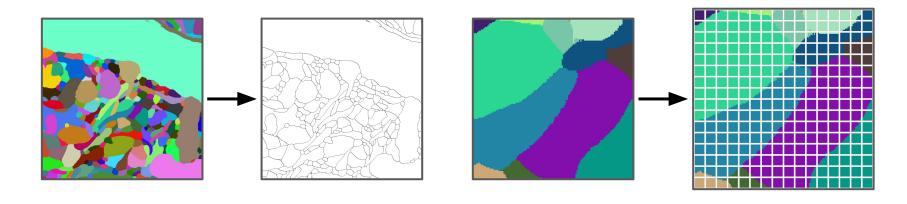


Compresso Overview

Lossless compression

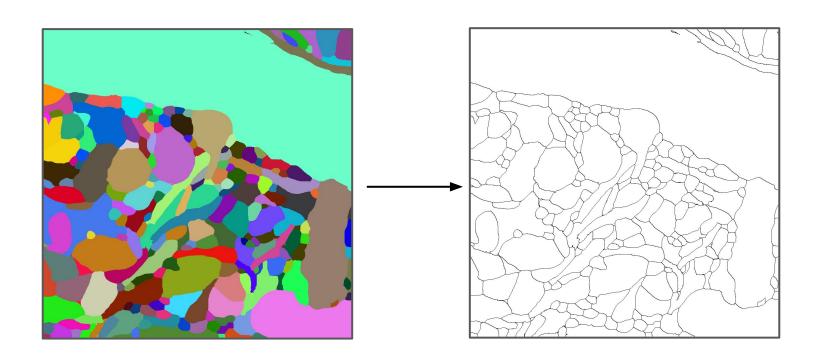
Decouple per-segment shapes and per-pixel labels

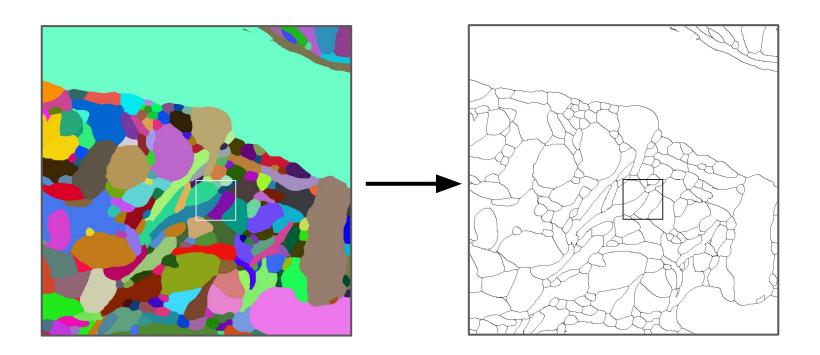
Divide the volume into non-overlapping congruent 3D windows



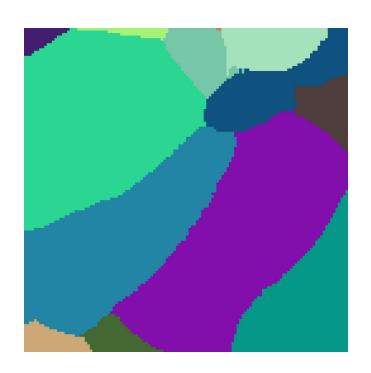
Boundary Map Generation

A pixel (x, y, z) is 1 if its neighbor (x + 1, y, z) or (x, y + 1, z) belongs to a different segment





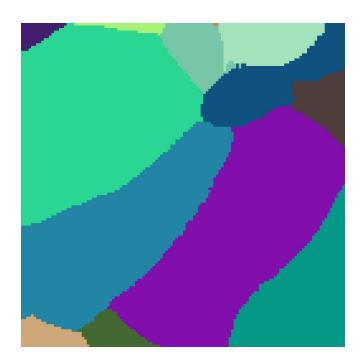
Boxed region divided into congruent windows

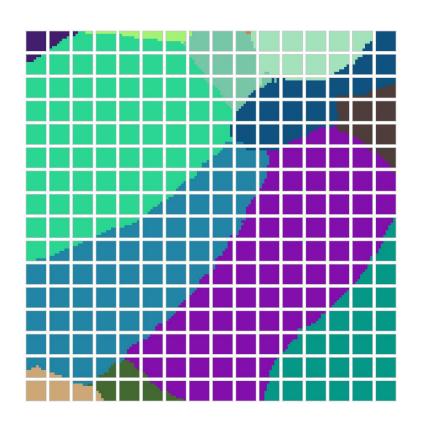




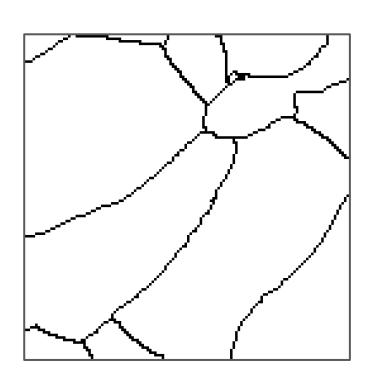
Boxed region divided into congruent windows

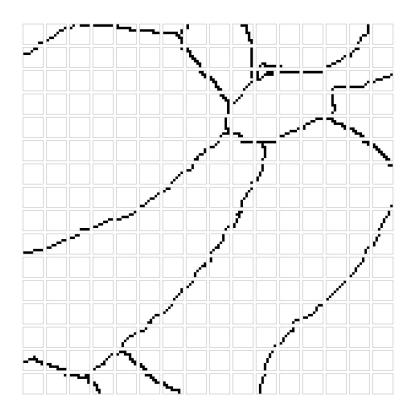
Each window is 8 x 8 x 1 voxels





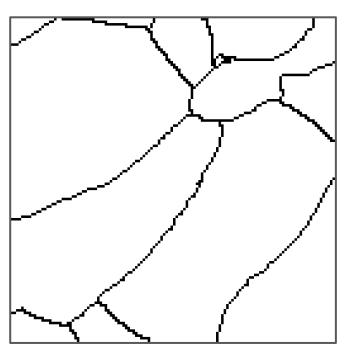
Accompanying boundary map

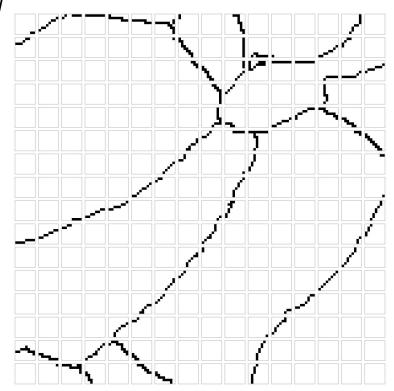




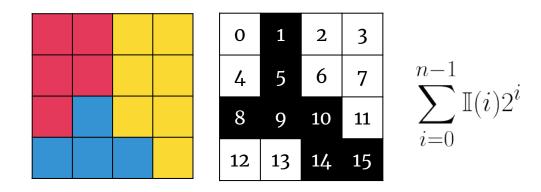
Accompanying boundary map

Goal: Store one 64-bit integer per window

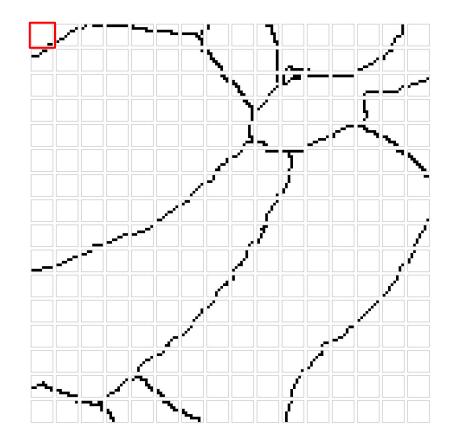


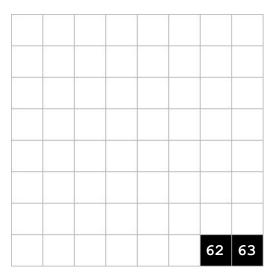


Assigning Values to Windows

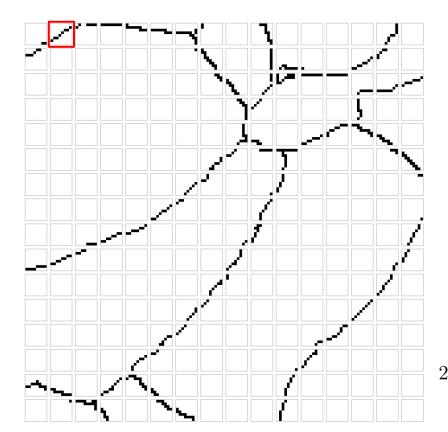


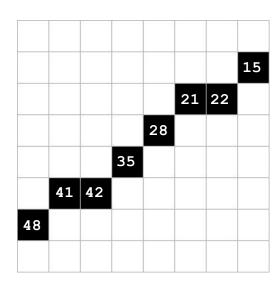
 $2^{1} + 2^{5} + 2^{8} + 2^{9} + 2^{10} + 2^{14} + 2^{15} = 50978$



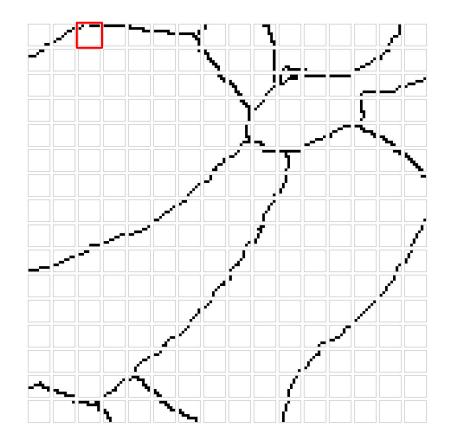


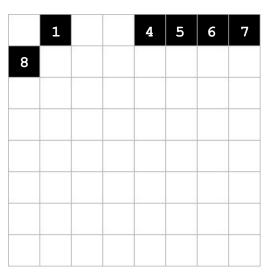
 $2^{62} + 2^{63} = 13835058055282163712$



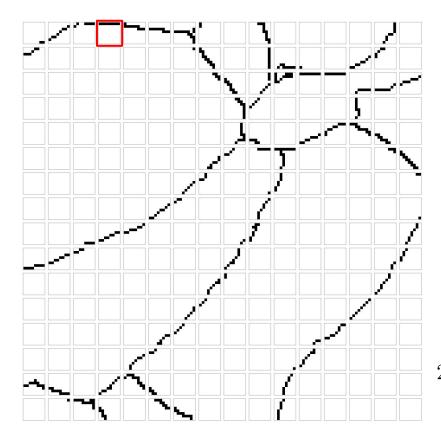


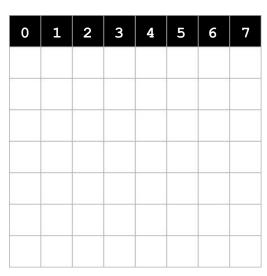
$$2^{15} + 2^{21} + 2^{22} + 2^{28} + 2^{35} + 2^{41} + 2^{42} + 2^{48} = 288106680975360$$



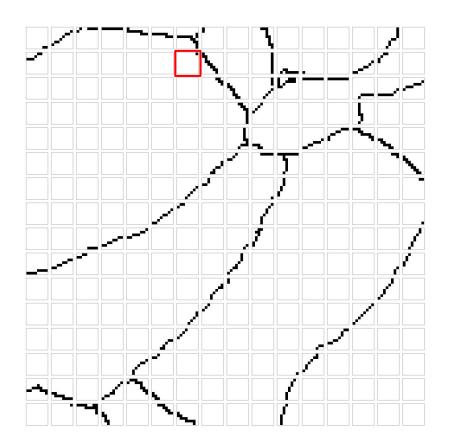


$$2^1 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 = 498$$

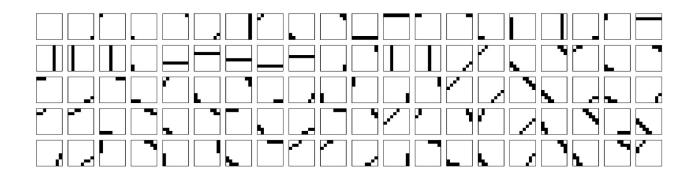




$$2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 = 255$$

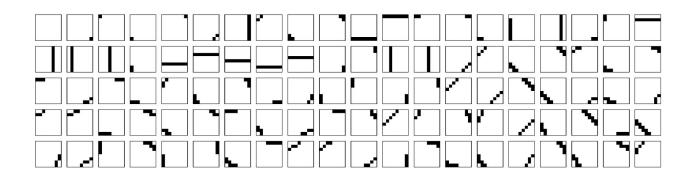


Window Repetition



These 100 windows account for over 82% of all windows on a representative connectomics dataset

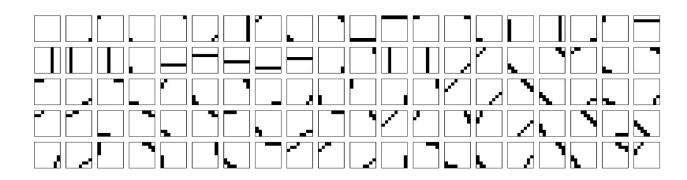
Window Repetition



These 100 windows account for over 82% of all windows on a representative connectomics dataset

Typically there are only 100,000 unique windows in a given label volume

Window Repetition



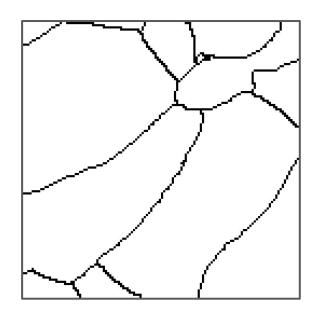
These 100 windows account for over 82% of all windows on a representative connectomics dataset

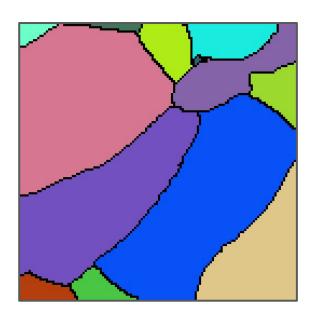
Typically there are only 100,000 unique windows in a given label volume

Map window values to this smaller subset to use 3 bytes per window

Compressing Per-Pixel Labels

Goal: Store one 64-bit label per component

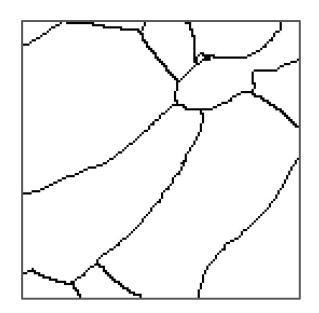


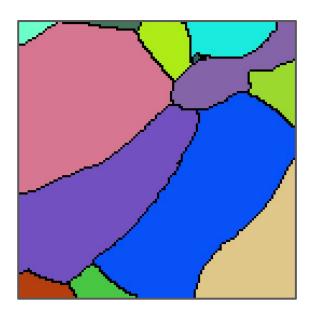


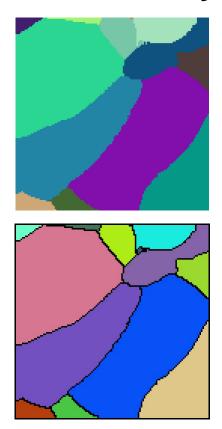
Compressing Per-Pixel Labels

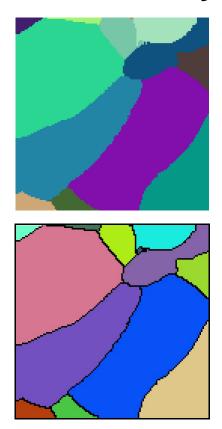
Goal: Store one 64-bit label per component

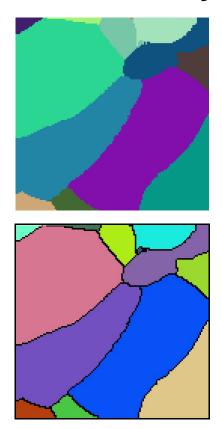
Solution: Identify continuous regions using a connected components algorithm

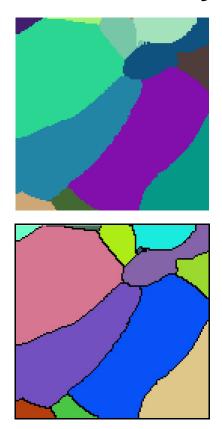


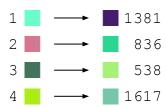


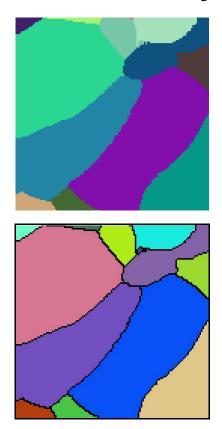


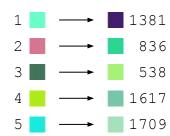


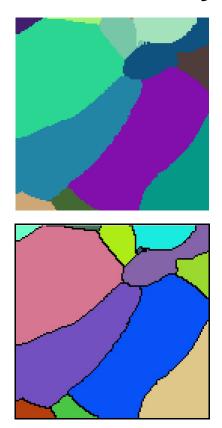


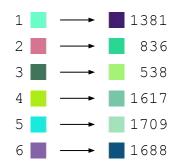




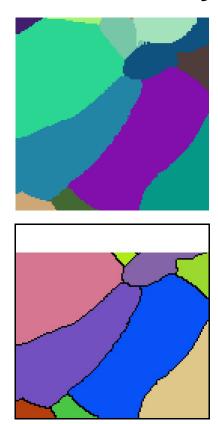




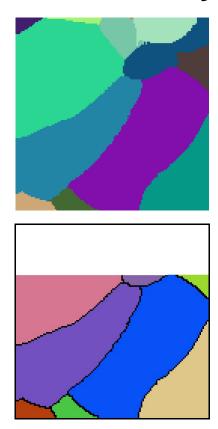


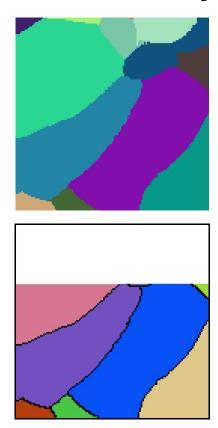


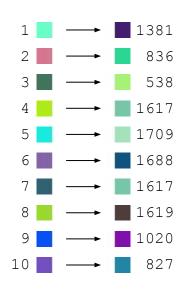


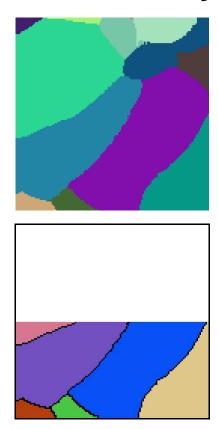


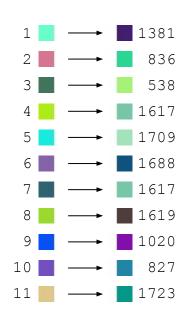




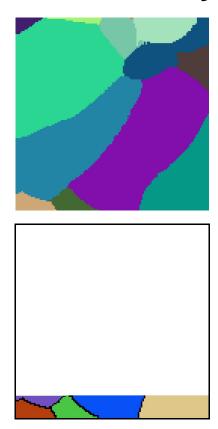


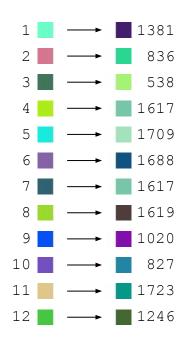




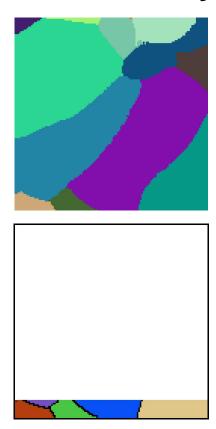


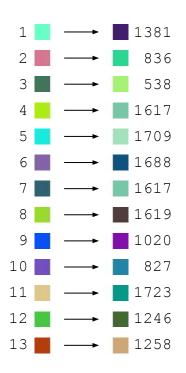
Per-Pixel Label Encoding



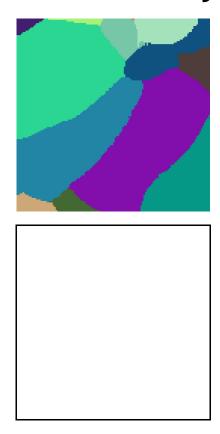


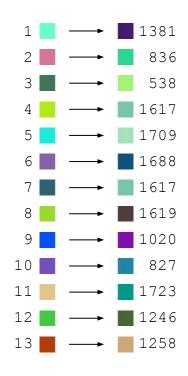
Per-Pixel Label Encoding



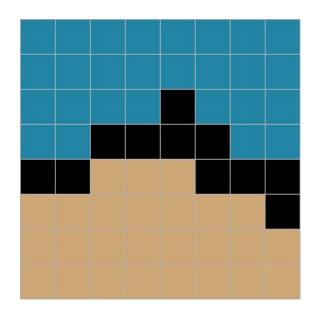


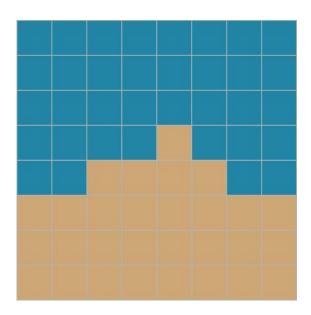
Per-Pixel Label Encoding





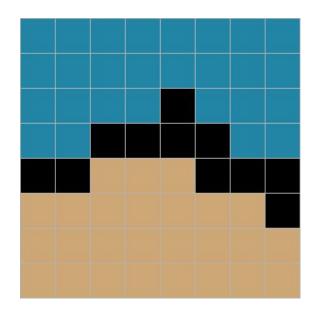
So far, we assumed the boundary map and connected component mapping is enough for decompression

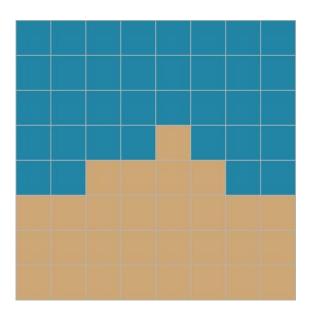


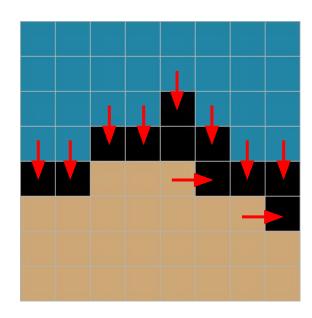


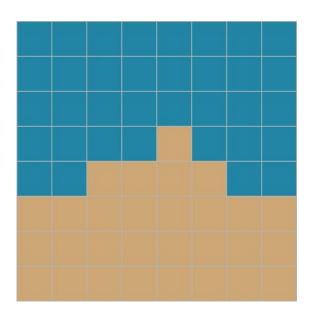
So far, we assumed the boundary map and connected component mapping is enough for decompression

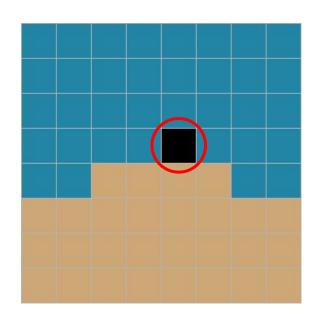
One additional corner case to consider:

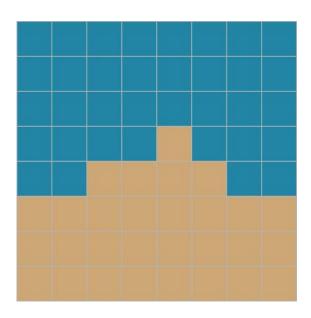


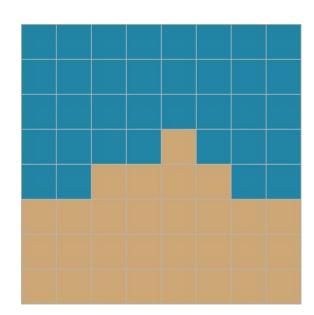


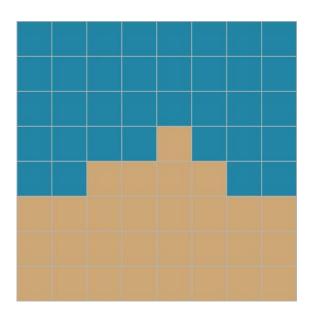












Decompression

Decompressing Boundary Map

```
13835058055282163712
     288106680975360
                 498
                 255
            14696193
          3762225152
 9259612355635970048
                 257
 9277485877618024504
  580982358589603968
              460848
                 128
```

Decompressing Boundary Map

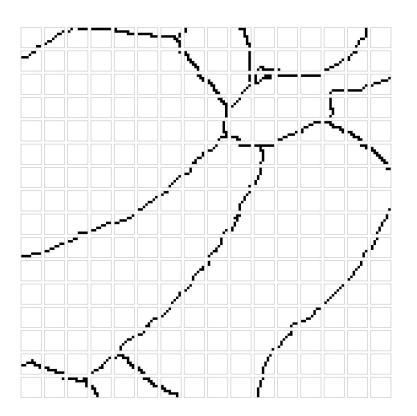
```
13835058055282163712
 288106680975360
 498
 255
 14696193
 3762225152
 9259612355635970048
 257
 9277485877618024504
 580982358589603968
 460848
 128
```

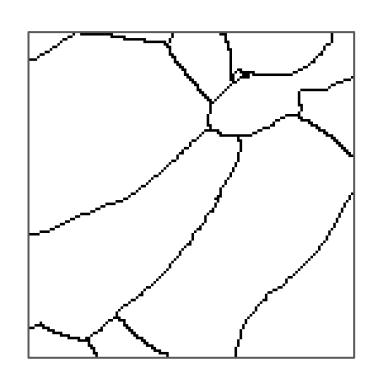
Decompressing Boundary Map

498

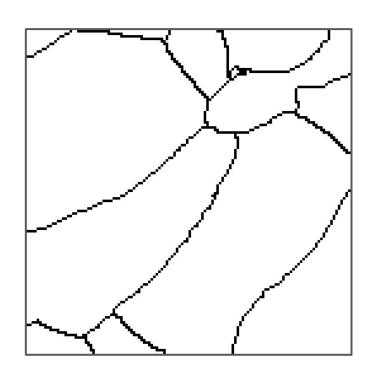
	1	9	4	5	6	7
8						
		re.				
					9-	
		19-				

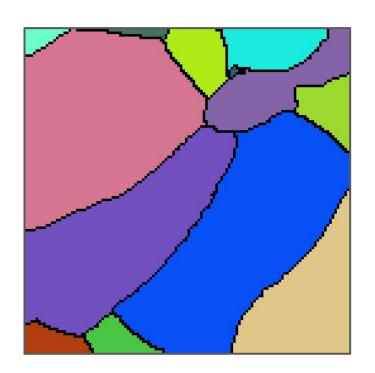
•



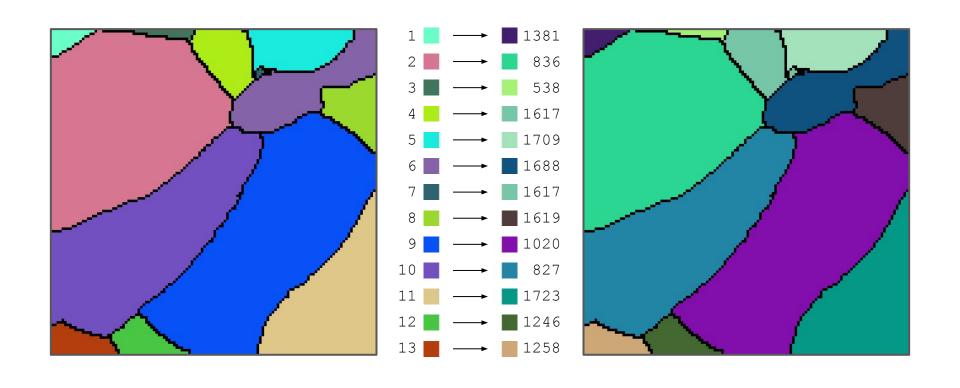


Decompressing Per-Pixel Labels

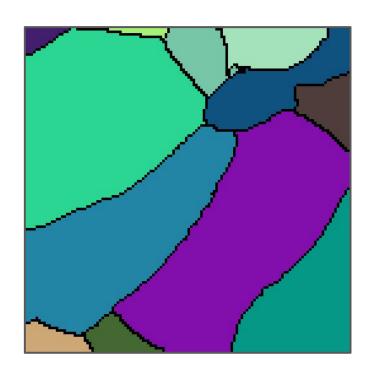


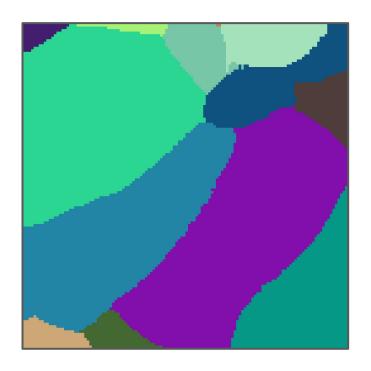


Decompressing Per-Pixel Labels



Decompressing Per-Pixel Labels





Variable 3D Window Sizes

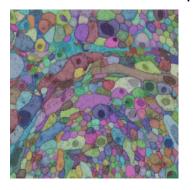
Compresso can use different sized windows depending on the input data

Variable 3D Window Sizes

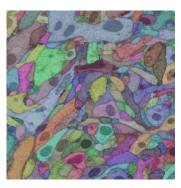
Compresso can use different sized windows depending on the input data

4x4x4 windows outperform 8x8x1 windows by 12.5% on an isotropic dataset

Isotropic Data

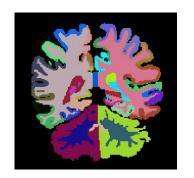


XY-plane



YZ-plane

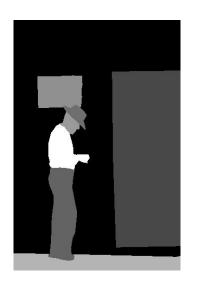
Extends to Other Segmentation Datasets



SPL Brain Atlas

SPL Knee Atlas

SPL Abdominal Atlas



Berkeley Segmentation
Dataset

PASCAL Visual Object Classes Dataset

Results

Two Stage Compression with LZMA

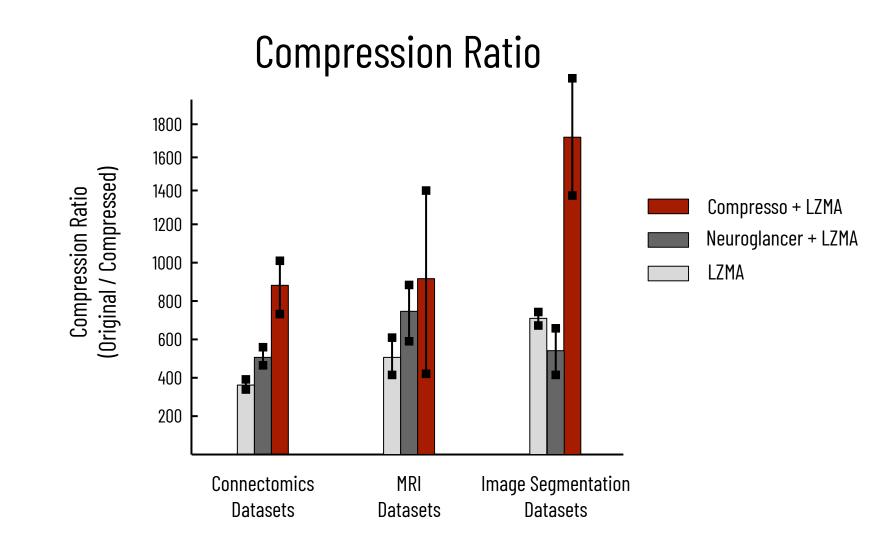
Follow Compresso with a general-purpose compression scheme such as LZMA

Two Stage Compression with LZMA

Follow Compresso with a general-purpose compression scheme such as LZMA

LZMA uses complex models for probability predictions of bits

Dataset	Uncompressed	Neuroglancer + LZMA	Compresso + LZMA
AC3 Mouse cortex, EM	1.26 GB	550x	771x
AC4 Mouse cortex, EM	838.86 MB	479x	660x
CREMI A, B, C Drosophila brain, EM	1.56 GB	465x, 629x, 496x	804x, 1158x, 899x
L. Cylinder Mouse cortex, EM	10.07 GB	425x	889x
SPL Brain Atlas T1/T2-weighted MRI	135.27 MB	764x	645x
SPL Knee Atlas MRI	249.56 MB	1172x	1562x
SPL Abdominal Atlas CT	59.24 MB	417x	482x



Method	Compression Speed	Decompression Speed
LZMA	9.89 MB / s	366.13 MB / s
Neuroglancer + LZMA	43.80 MB/s	164.32 MB / s

131.15 MB / s

206.60 MB/s

Compresso + LZMA

Complexity

P is the number of pixels; N is the number of distinct window values; X and Y are the size of the x and y dimensions of the input data; and α is the inverse Ackermann function.

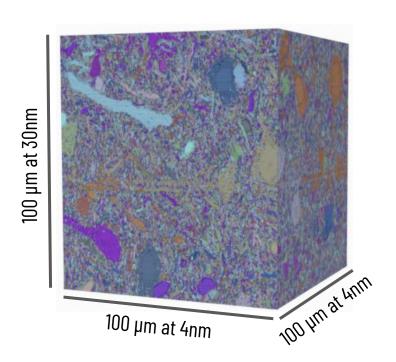
Compression:

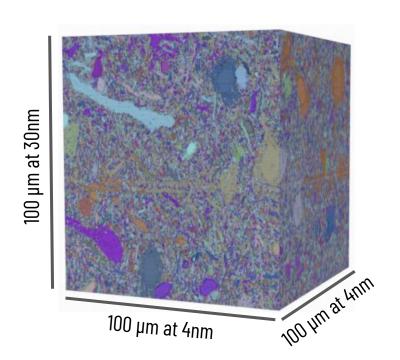
$$O(P(1 + \alpha(XY)) + N \log N)$$

Decompression:

$$O(P(1 + \alpha(XY)))$$

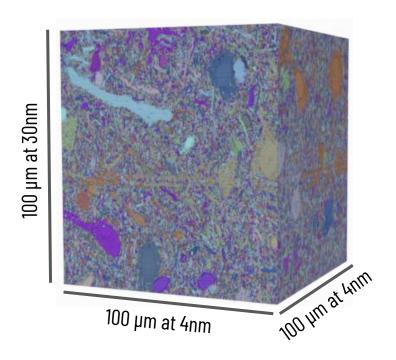
Compression of 100 microns cubed





Uncompressed: 19.25 terabytes

Compression of 100 microns cubed

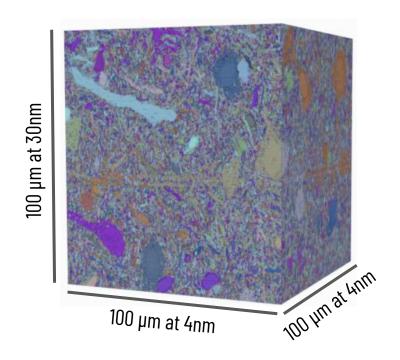


Uncompressed: 19.25 terabytes

With Compresso + LZMA: 25.94 gigabytes

Ratio: 742x

Compression of 100 microns cubed



Uncompressed: 19.25 terabytes

With Compresso + LZMA: 25.94 gigabytes

Ratio: 742x

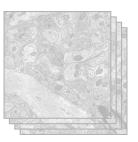
AWS Storage Costs (S3 Standard Storage):

Uncompressed: \$442.75 / month

Compressed: \$0.60 / month

Connectomics Pipeline

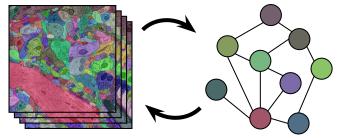
Acquisition



Registration

Segmentation

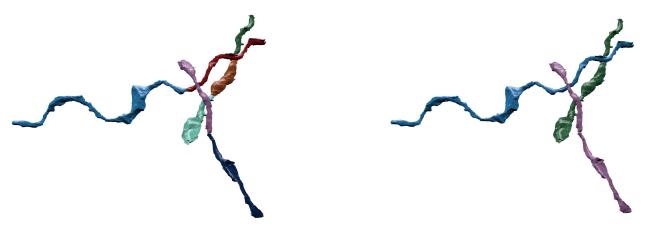
Proofreading



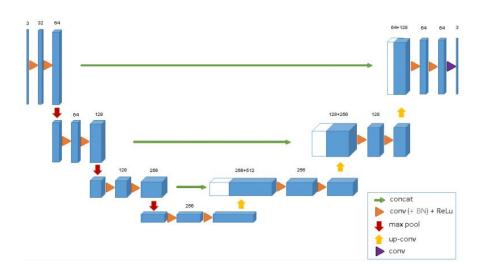
Network-Level Correction

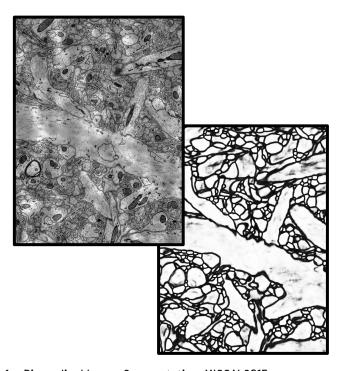
Biologically-Constrained Region Merging for Connectome Reconstruction

Brian Matejek, Daniel Haehn, Donglai Wei, Toufiq Parag, Hanspeter Pfister



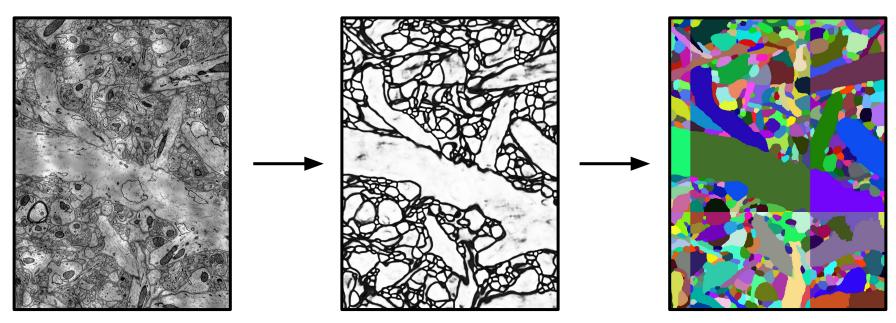
U-Net





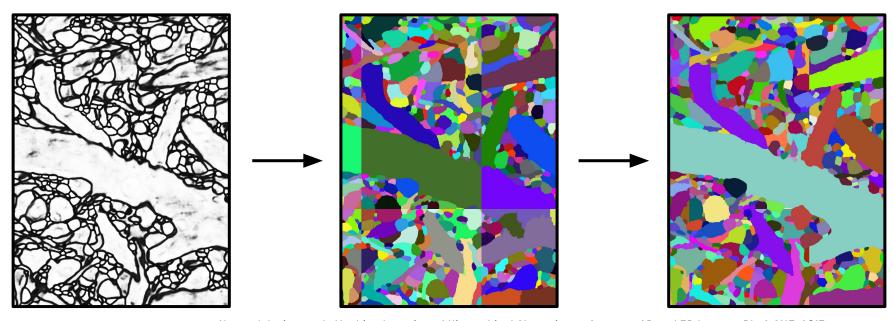
Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015 Cicek et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016

3D Watershed on Affinities



Zlateski et al., Image Segmentation by Size-Dependent Single Linkage Clustering of a Watershed Basin Graph, 2015
Funke et al., A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs, 2017
Zeng et al., DeepEM3D: Approaching Human-Level Performance on 3D Anisotropic EM Image Segmentation, Bioinformatics 2017

Context-Aware Delayed Agglomeration

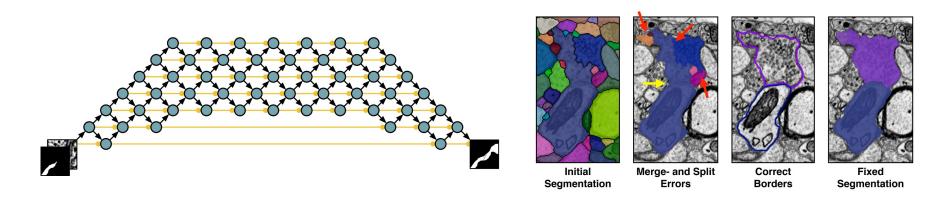


Nunez-Iglesias et al., Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLoS ONE, 2013 Parag et al., A Context-Aware Delayed Agglomeration Framework for Electron Microscopy Segmentation, PLoS ONE 2015

Errors

Automatic Segmentation Ground Truth

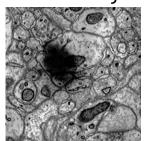
Proofreading and Error Correction

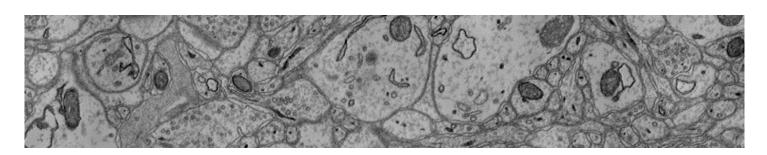


Zung et al., An Error Detection and Correction Framework for Connectomics, NIPS 2017 Haehn et al., Guided Proofreading of Automatic Segmentations for Connectomics, CVPR 2018

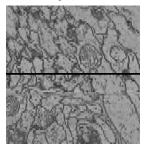
Need for Global Context

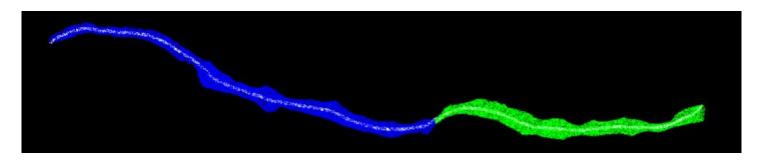
Stained Images



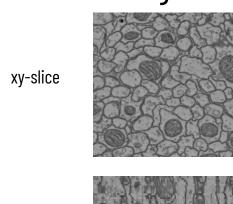


Missing Sections

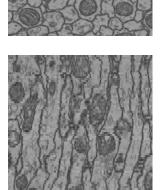




Variable Image Data

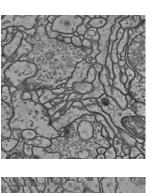


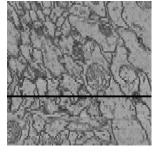
yz-slice

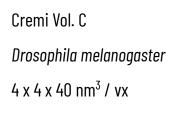


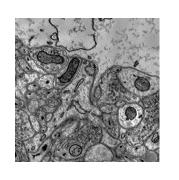
Cremi Vol. A

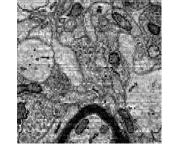
Drosophila melanogaster
4 x 4 x 40 nm³ / vx

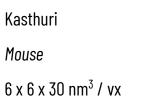


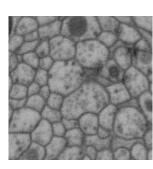


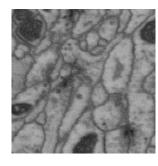










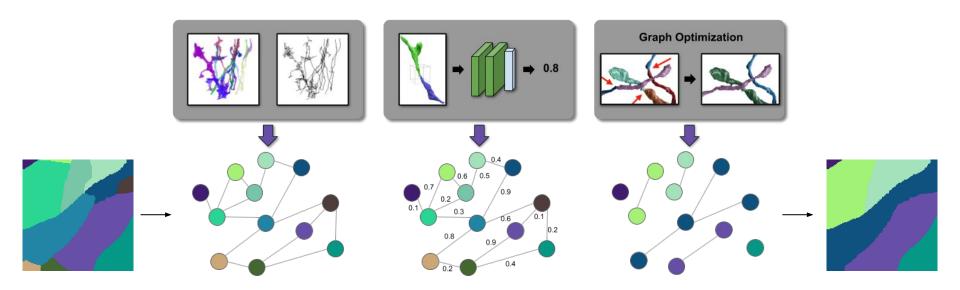


FlyEM

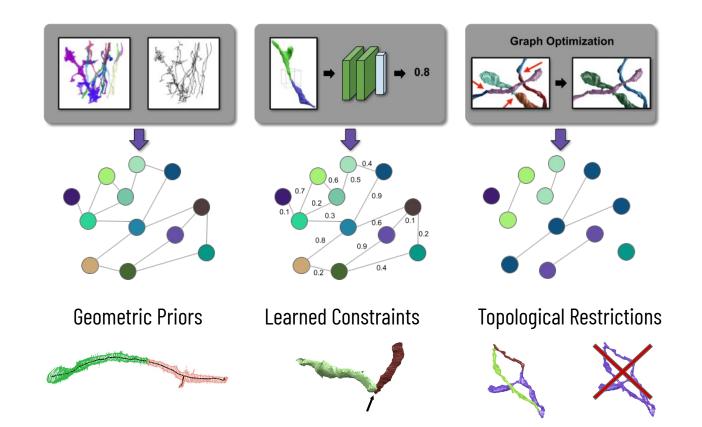
Drosophila melanogaster

10 x 10 x 10 nm³ / vx

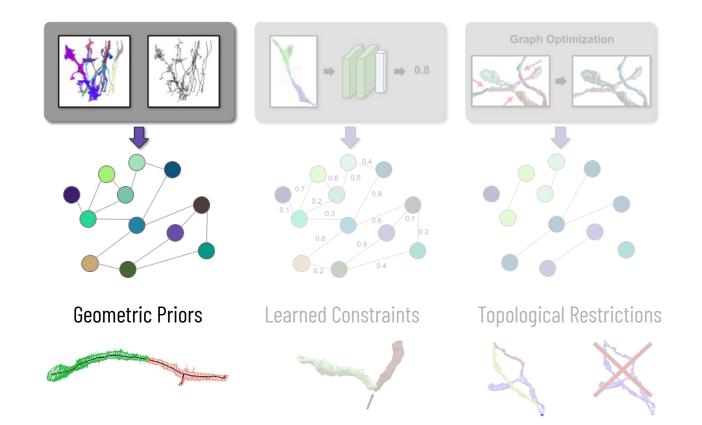
Proposed Region Merging



Proposed Region Merging with Biological Constraints



Goal: Construct a graph with as few extra edges as possible



Adjacency Graphs

Every segment in the label volume receives a node

Segments with a pair of neighboring voxels receive an edge between the corresponding nodes

Adjacency Graphs

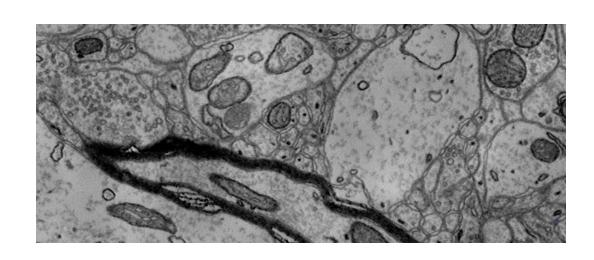
Every segment in the label volume receives a node

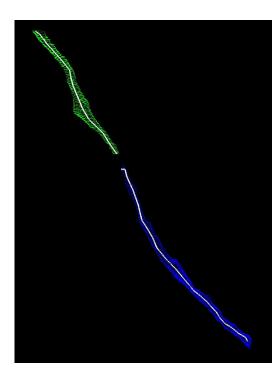
Segments with a pair of neighboring voxels receive an edge between the corresponding nodes

Typical Segment

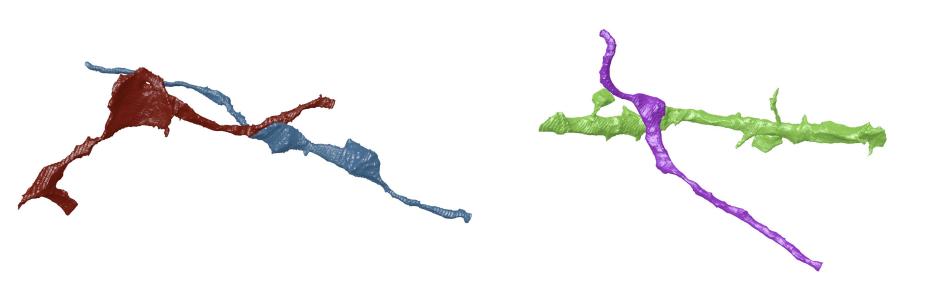
103 Adjacent Neighbors

Non-Adjacent Split Errors



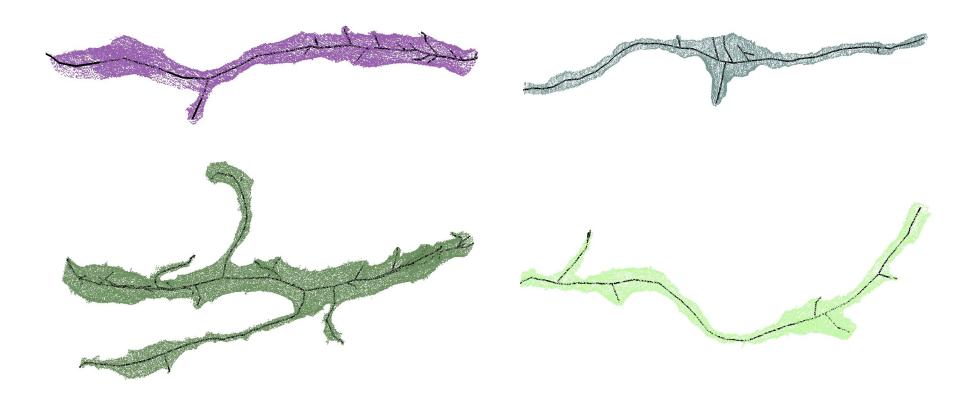


Correctly Segmented



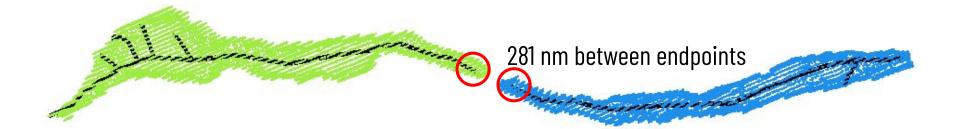
Incorrectly Split

Skeletonization

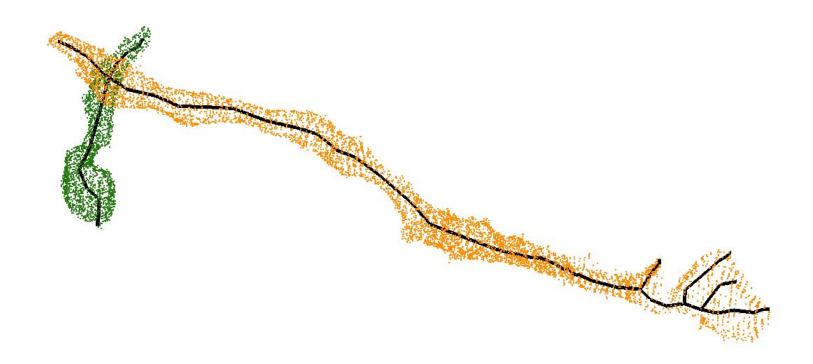


Merge Candidate

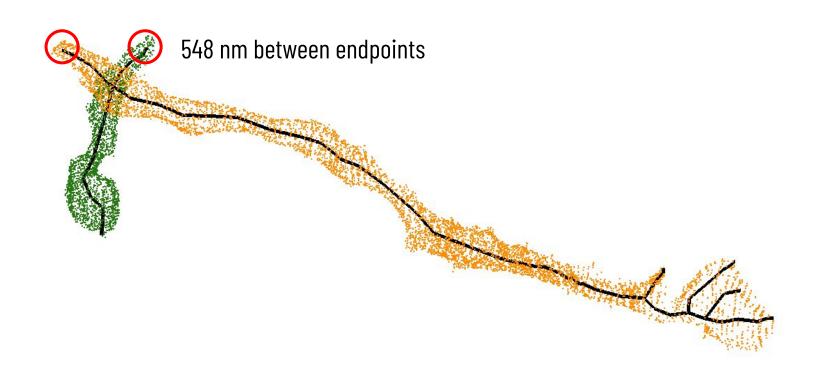
Merge Candidate



Pruned Candidate



Pruned Candidate



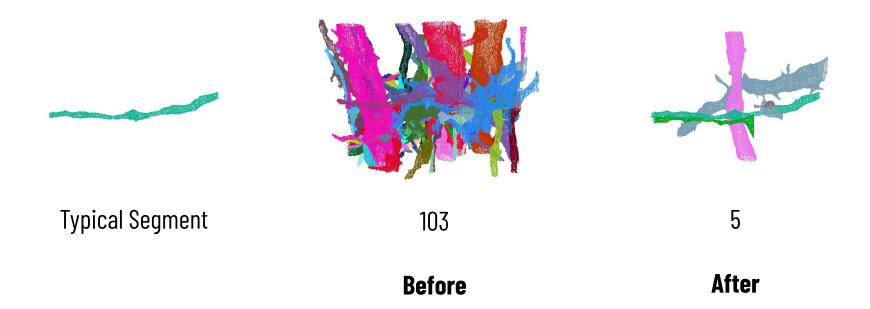
Number of Edges

Typical Segment

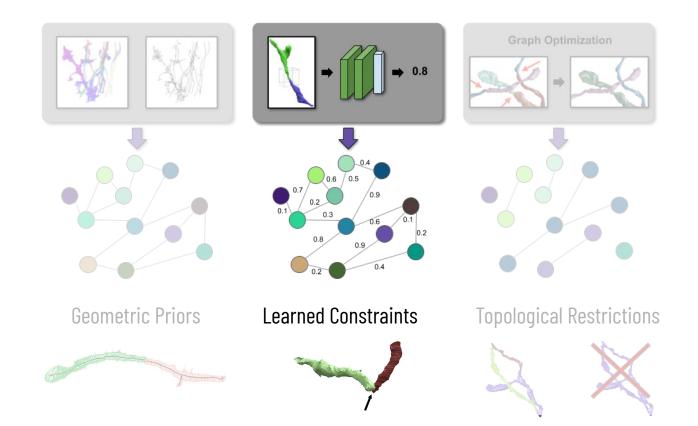
103

Before

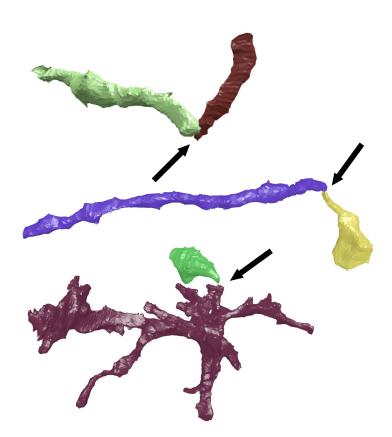
Number of Edges



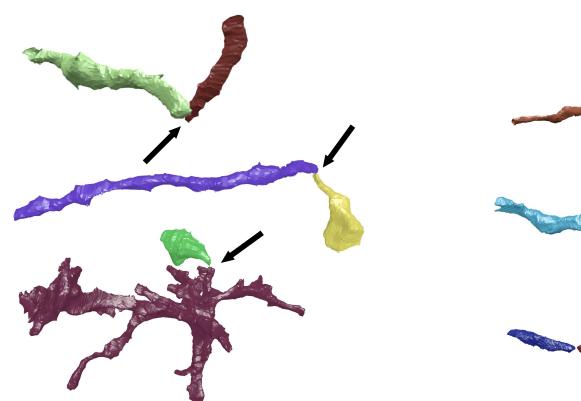
Goal: Populate edge weights for the graph

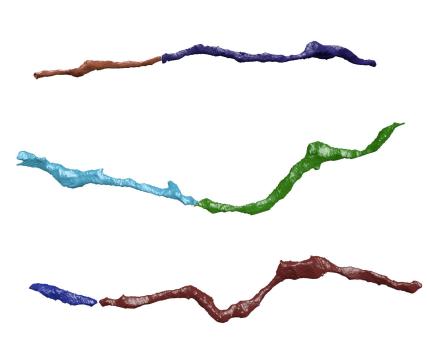


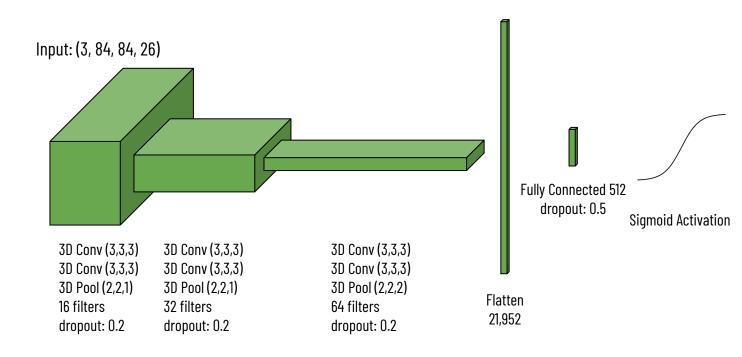
Learned Constraints

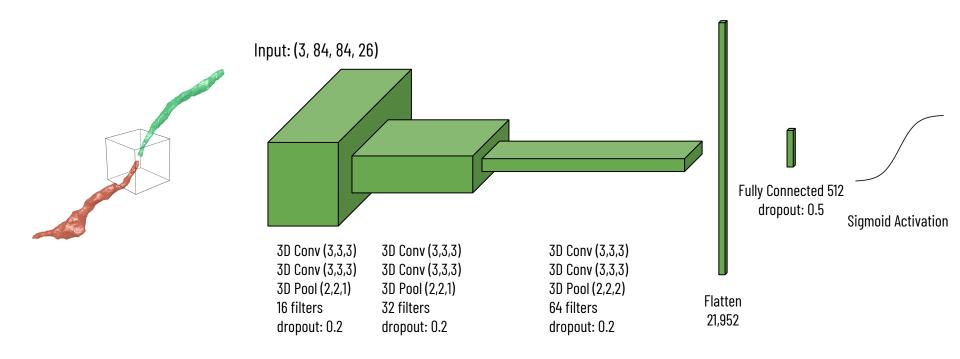


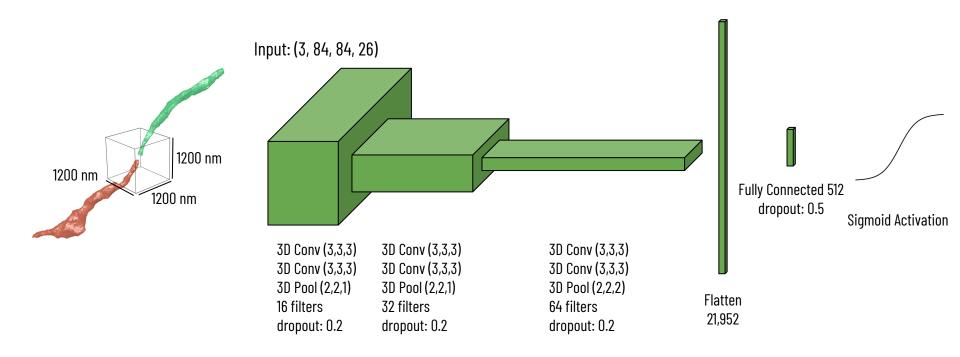
Learned Constraints

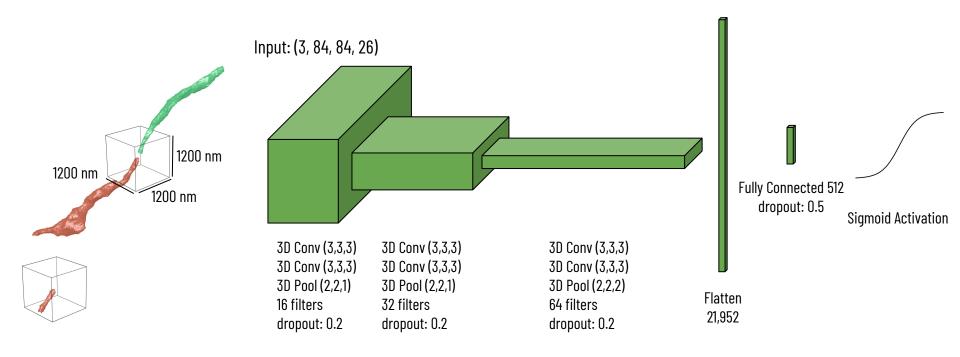


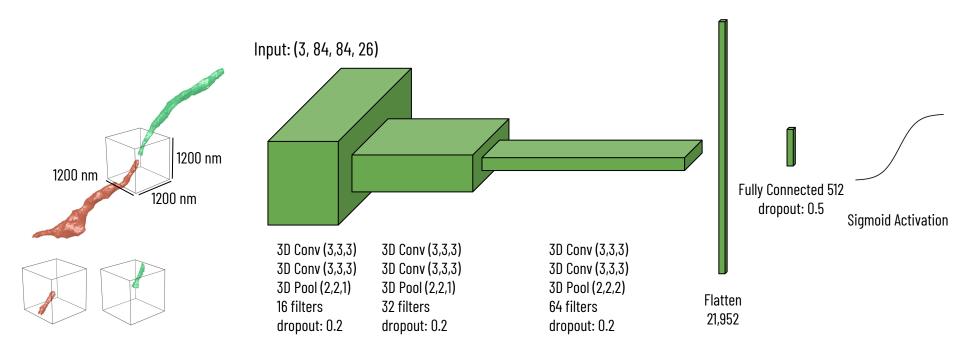


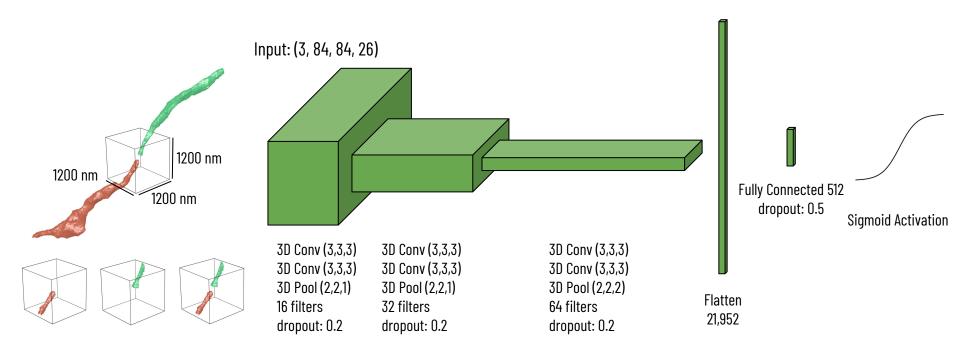












Parameters

Parameters	Values Mean Squared Error			
Loss Function				
Optimizer	SGD with Nesterov Momentum			
Momentum	0.9			
Initial Learning Rate	0.01			
Decay Rate	$5*10^{-8}$			
Activation	LeakyReLU ($\alpha = 0.001$)			
Kernel Sizes	$3 \times 3 \times 3$			
Filter Sizes	$16 \rightarrow 32 \rightarrow 64$			

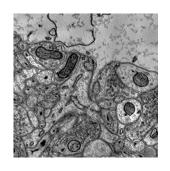
Table 1: Training parameters.

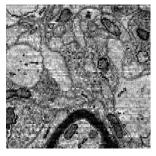
Architectures

Depth	Input Size	No. Parameters	Output Size	Accuracy	Precision	Recall
3	(3, 18, 52, 52)	1,101,553	(64, 3, 3, 3)	91.30	58.06	92.81
3	(3, 20, 60, 60)	2,313,969	(64, 4, 4, 4)	92.41	61.70	92.41
3	(3, 22, 68, 68)	4,312,817	(64, 5, 5, 5)	92.33	61.49	92.34
3	(3, 24, 76, 76)	7,294,705	(64, 6, 6, 6)	93.51	65.78	93.13
3	(3, 26, 84, 84)	$11,\!456,\!241$	(64, 7, 7, 8)	95.38	74.43	92.34
3	(3, 28, 92, 92)	16,994,033	(64, 8, 7, 8)	91.87	59.70	94.22
3	(3, 30, 100, 100)	24,104,689	(64, 9, 9, 9)	92.01	60.24	93.75
4	(3, 28, 92, 92)	1,404,913	(128, 2, 2, 2)	91.70	60.24	85.94
4	(3, 32, 108, 108)	$2,\!650,\!097$	(128, 3, 3, 3)	92.80	64.28	86.88

Table 2. The results of various network architectures trained on the Kasthuri data.

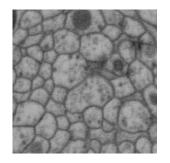
Independent of Image Data

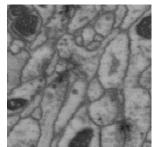




Mouse

6 x 6 x 30 nm³ / vx





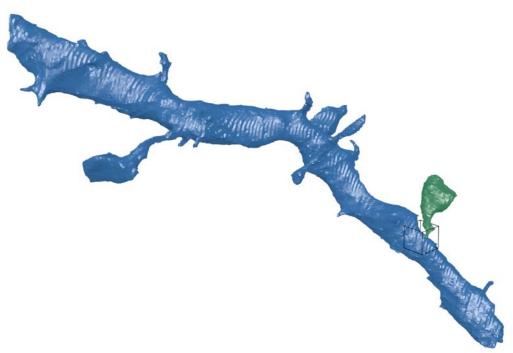
FlyEM

Drosophila melanogaster

10 x 10 x 10 nm³ / vx

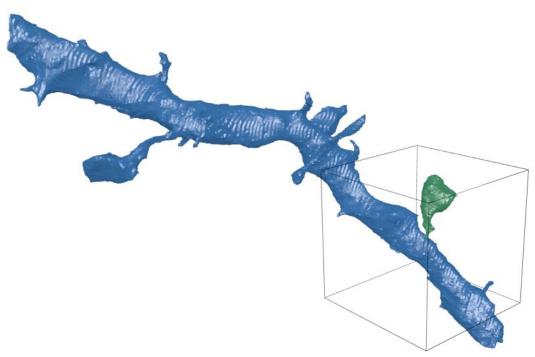
Regions of Interest

Too small and there is not enough local context



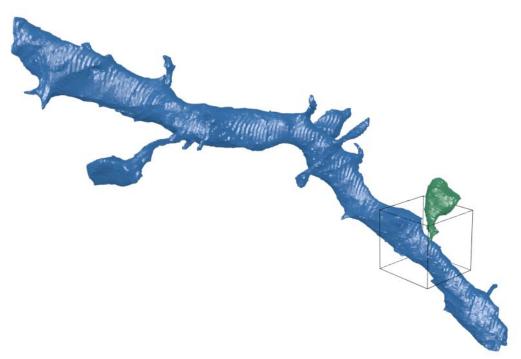
Regions of Interest

Too large and unnecessary detail inhibits learning



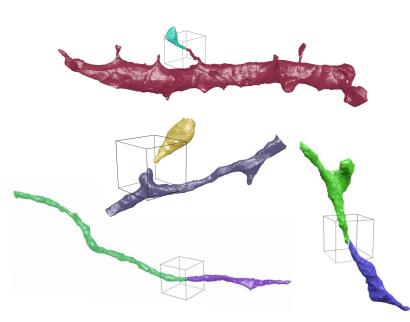
Regions of Interest

Found that cubes of size 1200 x 1200 x 1200 nm³ work well

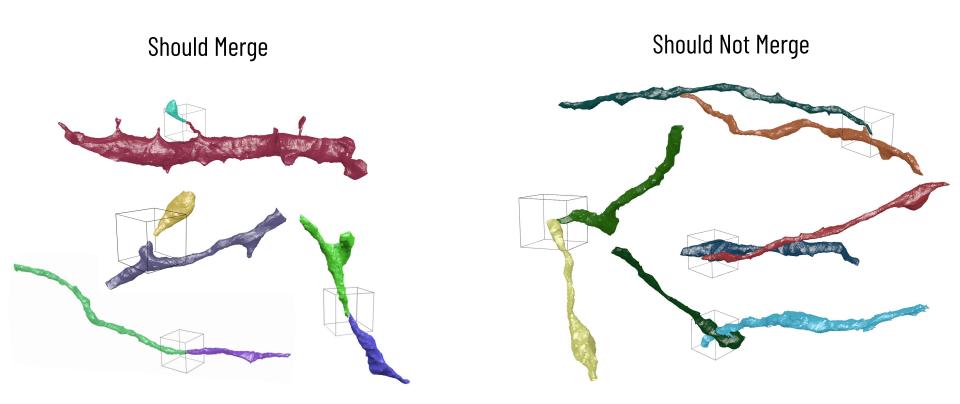


Input Examples

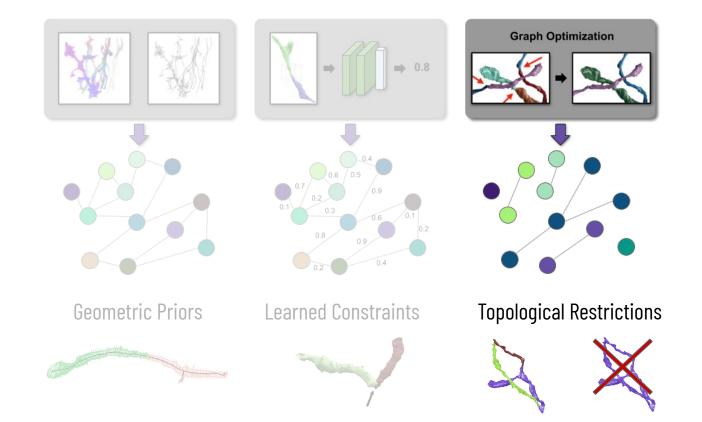
Should Merge



Input Examples



Goal: Partition the graph into individual neurons



Reformulate the segmentation problem as a multicut graph partitioning one

Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

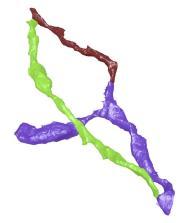
Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

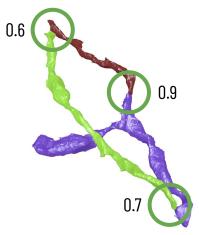
Guarantees a globally consistent solution



Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

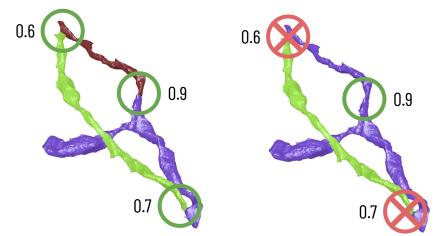
Guarantees a globally consistent solution



Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

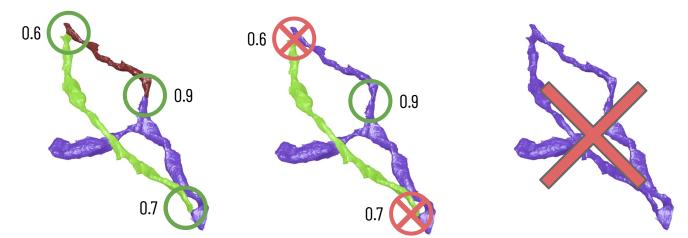
Guarantees a globally consistent solution



Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

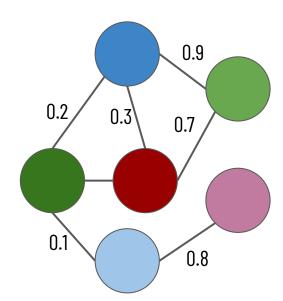
Guarantees a globally consistent solution



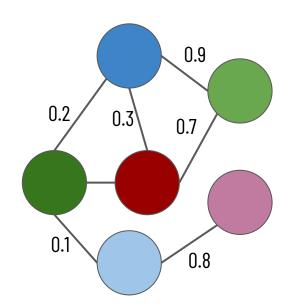
Reformulate the segmentation problem as a multicut graph partitioning one

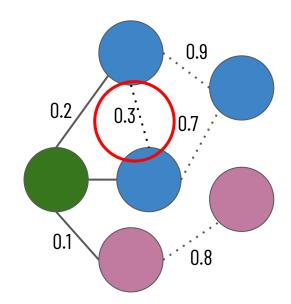
Reformulate the segmentation problem as a multicut graph partitioning one

Reformulate the segmentation problem as a multicut graph partitioning one



Reformulate the segmentation problem as a multicut graph partitioning one

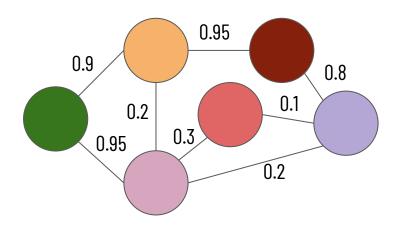


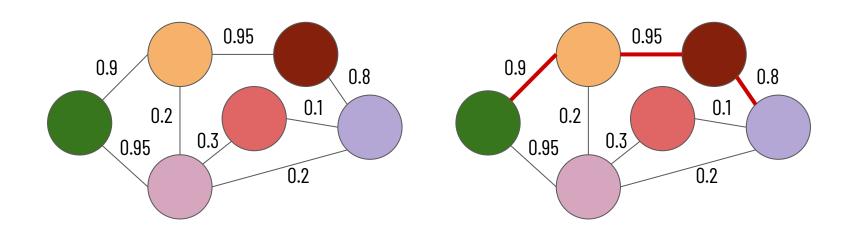


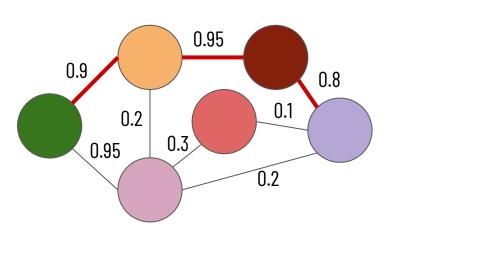
Reformulate the segmentation problem as a multicut graph partitioning one

Guarantees a globally consistent solution

The final number of segments is not predetermined





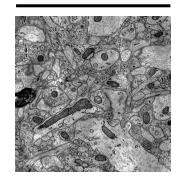




Results

Datasets

Training Data



Kasthuri Vol. 1

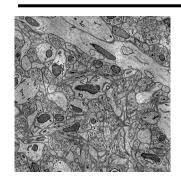
Mouse

6 x 6 x 30 nm³ / vx

1335 x 1809 x 338 vx

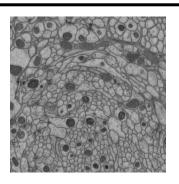
8.01 x 10.85 x 10.14 µm³

Testing Data



Kasthuri Vol. 2

Mouse
6 x 6 x 30 nm³ / vx
1336 x 1809 x 338 vx
8.02 x 10.85 x 10.14 µm³



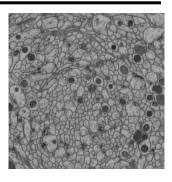
FlyEM Vol. 1

Drosophila melanogaster

10 x 10 x 10 nm³ / vx

999 x 999 x 998 vx

9.99 x 9.99 x 9.98 µm³



FlyEM Vol. 2

Drosophila melanogaster

10 x 10 x 10 nm³ / vx

999 x 999 x 999 vx

9.99 x 9.99 x 9.99 µm³

Measure of entropy between segmentation and ground truth

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels



VI Merge: Increases if two voxels from different neurons have the same label

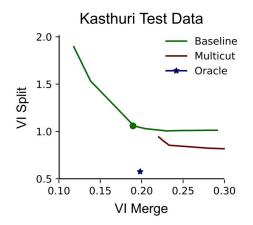
Measure of entropy between segmentation and ground truth

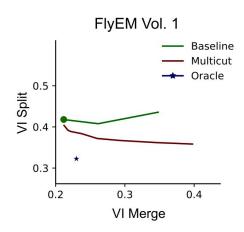
VI Split: Increases if two voxels from the same neuron have different labels

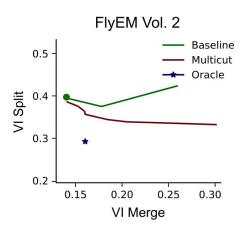
VI Merge: Increases if two voxels from different neurons have the same label

Total Variation of Information = VI Split + VI Merge

Variation of Information





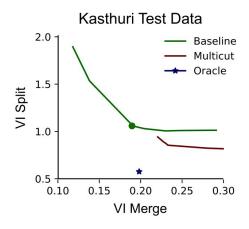


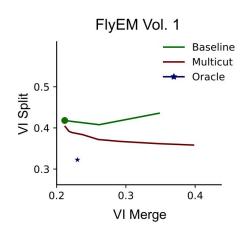
Baseline curve is generated by varying an agglomeration parameter in the Neuroproof algorithm

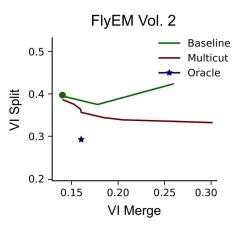
Green dot represents the input segmentation

Oracle correctly partitions the graph that we extract from the input segmentation

Variation of Information







Total VI Improvement:

10.4%

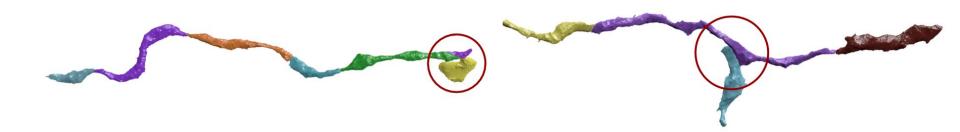
8.9%

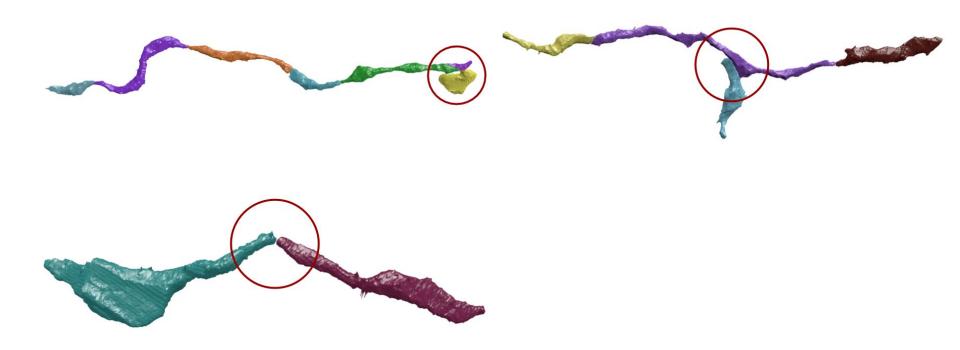
5.4%

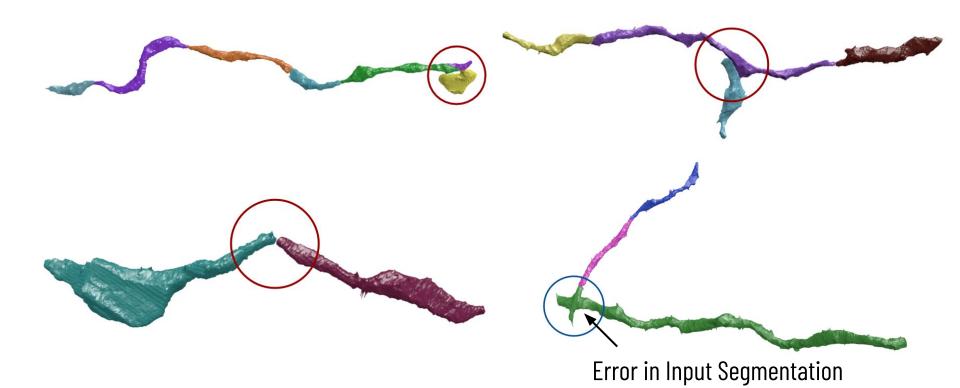
Qualitative Results

Qualitative Results

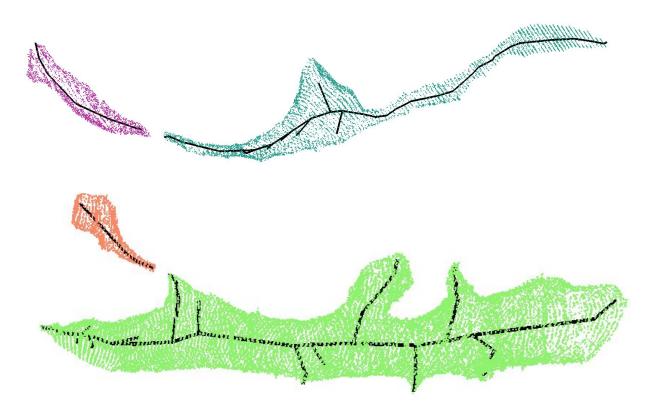
Qualitative Results

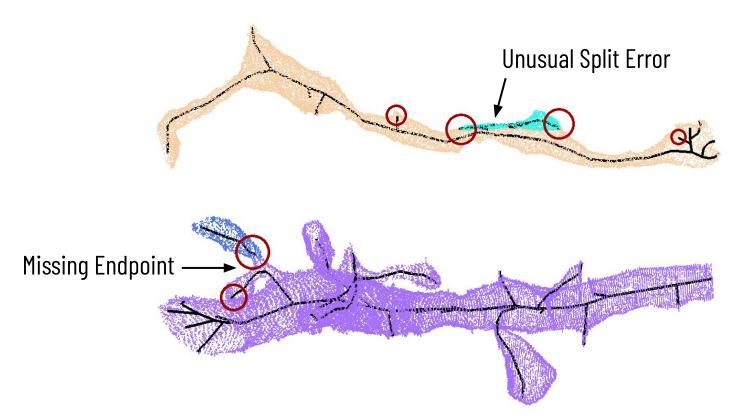






Graph Pruning



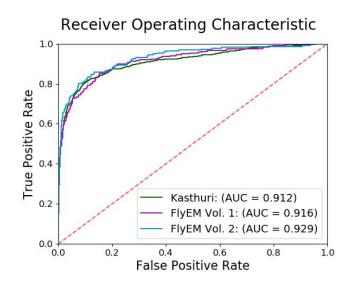


Graph Extraction Results

Table 1: The results of our graph pruning approach compared to the baseline graph with all adjacent regions. We show the number of true merge locations (e.g., 974) compared to total number of edges in the graph (e.g., 25,798) for each case. The number of missed splits corresponds to the number of split errors that our method misses compared to an adjacency matrix.

Dataset	Segment Adjacency	Skeleton Pruning	Missed Splits	Gained Edges
Kasthuri	974 / 25,798	764 / 6,218	307	97
FlyEM Vol. 1	304 / 15,949	212 / 4,578	105	13
FlyEM Vol. 2	298 / 17,614	197 / 4,366	120	19

CNN Results



Accuracies:

Kasthuri	90.4%	
FlyEM Vol. 1	94.4%	
FlyEM Vol. 2	95.2%	

Multicut Results

Table 2: Precision, recall, and accuracy changes between CNN only and CNN paired with graph-optimized reconstructions for the training and three test datasets. The combined method results in better precision and accuracy. The lifted multicut extension provides very slight improvements in recall and accuracy over these three datasets.

	Multicut			Lifted Multicut		
Dataset	Δ Precision	Δ Recall	Δ Accuracy	Δ Precision	Δ Recall	Δ Accuracy
Kasthuri	31.94%	-36.24%	0.71%	-1.01%	0.60%	0.02%
FlyEM Vol. 1	40.87%	-42.37%	1.26%	0.35%	0.85%	0.04%
FlyEM Vol. 2	27.80%	-44.95%	0.33%	0.54%	0.92%	0.04%

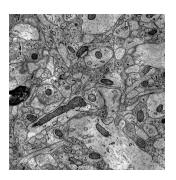
Running Times

Skeletonization: 0.56 seconds per segment on average

Graph Extraction: 31 seconds

CNN Inference: 124 seconds

Multicut: 37 seconds



Kasthuri Vol. 1

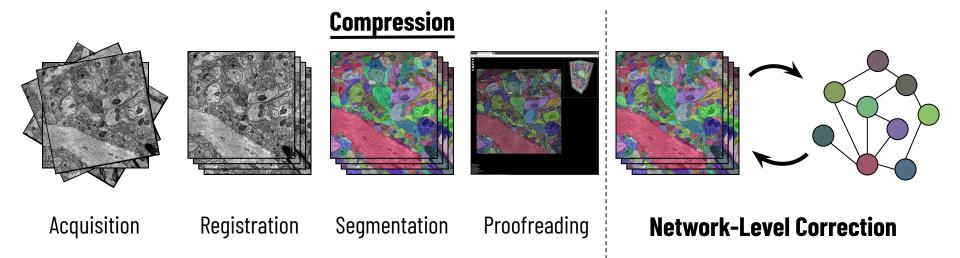
Mouse

6 x 6 x 30 nm³ / vx

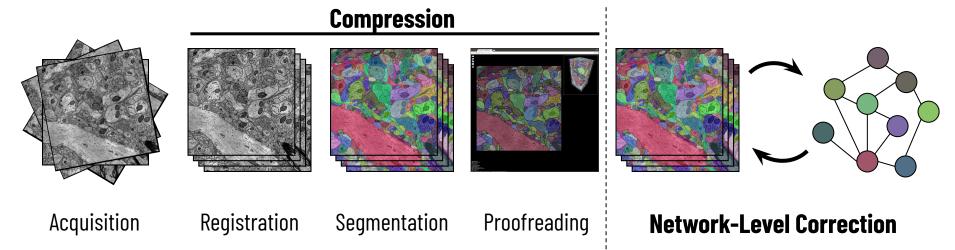
1335 x 1809 x 338

8.01µm x 10.85µm x 10.14µm

Connectomics Pipeline

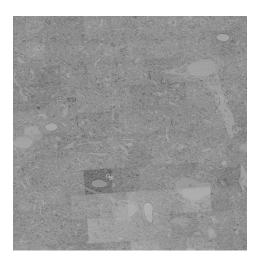


Connectomics Pipeline



Compression Future Work

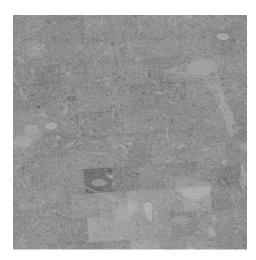
Specialized compression techniques for raw images (currently use JPEG 2000)



Compression Future Work

Specialized compression techniques for raw images (currently use JPEG 2000)

Use convolutional neural networks to improve compression of images

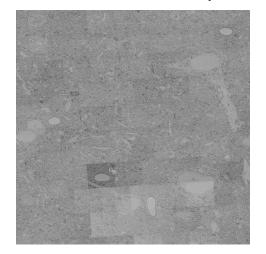


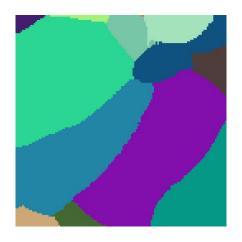
Compression Future Work

Specialized compression techniques for raw images (currently use JPEG 2000)

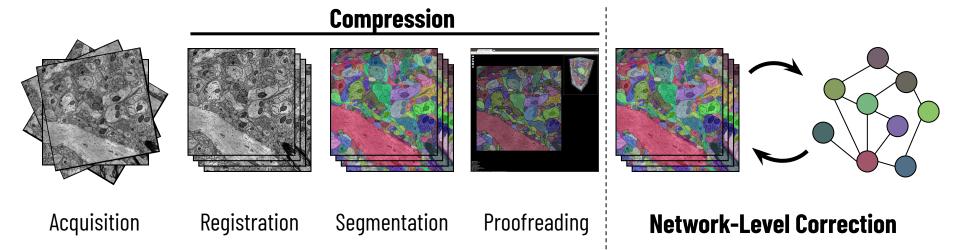
Use convolutional neural networks to improve compression of images

Add random access to Compresso for smoother real-time visual analysis of large datasets



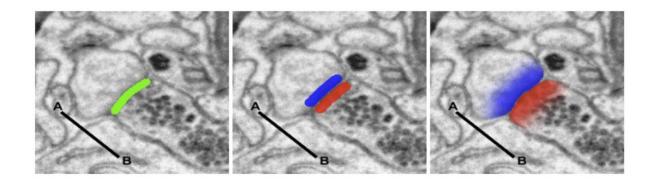


Connectomics Pipeline



Additional Biological-Constraints

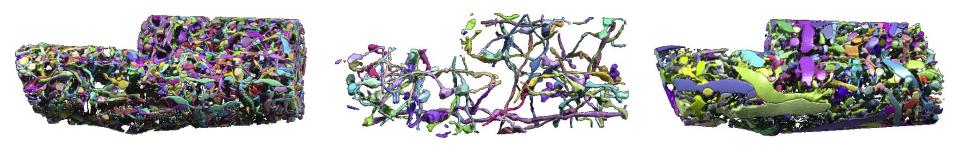
Use synaptic information to prevent dendrites and axons from merging



Additional Biological-Constraints

Use synaptic information to prevent dendrites and axons from merging

Classify neuron types to prevent inhibitory and excitatory neurons from merging



Excitatory Axons Inhibitory Axons Dendrites

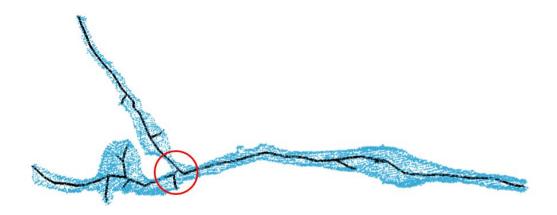
Address Merge Errors

Currently difficult because the number of potential split candidates grows quickly

Address Merge Errors

Currently difficult because the number of potential split candidates grows quickly

Use skeletons to quickly locate potential merge errors

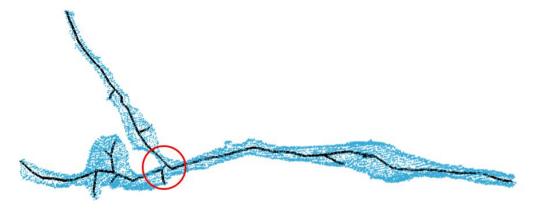


Address Merge Errors

Currently difficult because the number of potential split candidates grows quickly

Use skeletons to quickly locate potential merge errors

Divide segments with a watershed algorithm and use existing CNN



Thank you!

Questions?