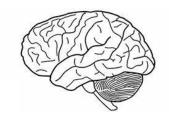
Error Correction for Connectomics

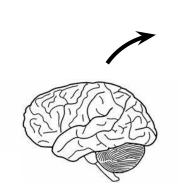
Brian Matejek

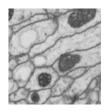
Goal: Extract the wiring diagram from a brain

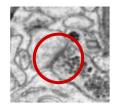


Goal: Extract the wiring diagram from a brain

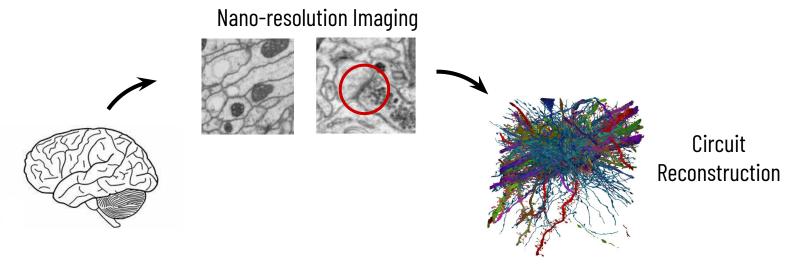
Nano-resolution Imaging



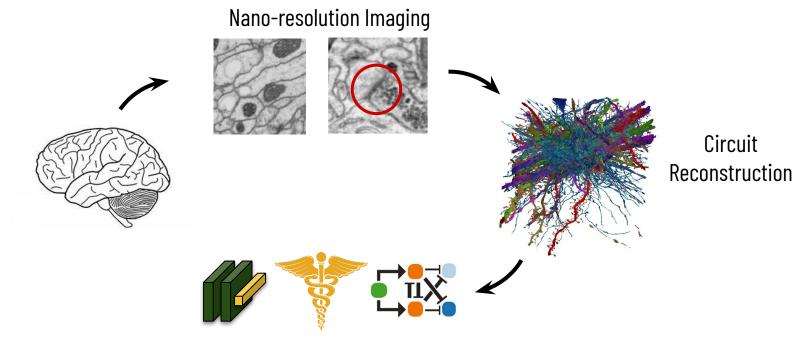




Goal: Extract the wiring diagram from a brain

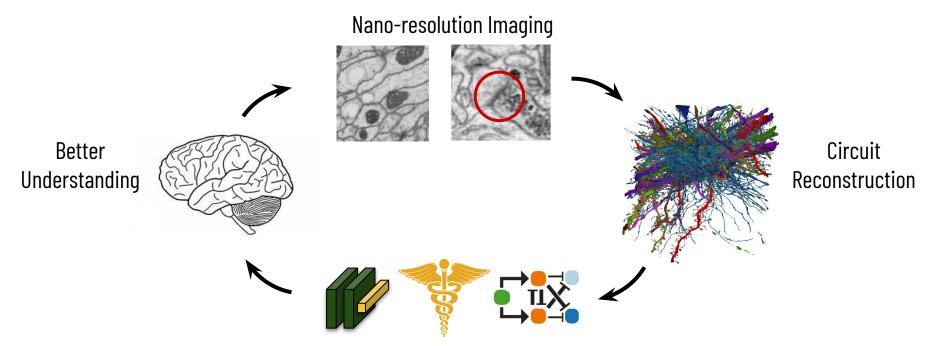


Goal: Extract the wiring diagram from a brain



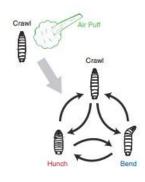
Improved Neural Networks, Medicine, Models

Goal: Extract the wiring diagram from a brain



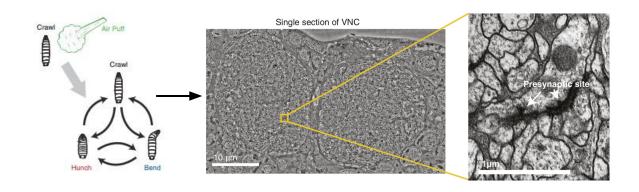
Improved Neural Networks, Medicine, Models

Goal: Extract the wiring diagram from a brain



Behavior

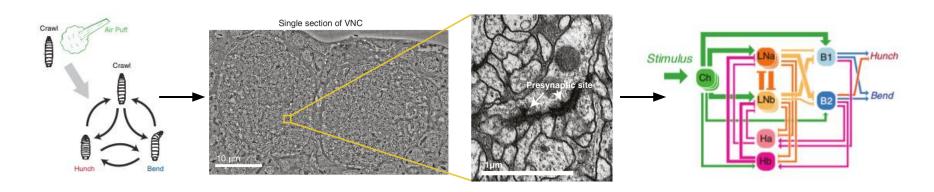
Goal: Extract the wiring diagram from a brain



Behavior

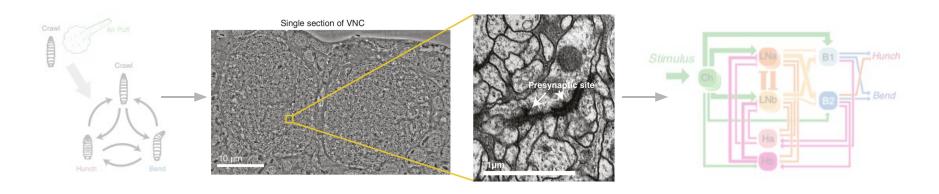
Structure

Goal: Extract the wiring diagram from a brain



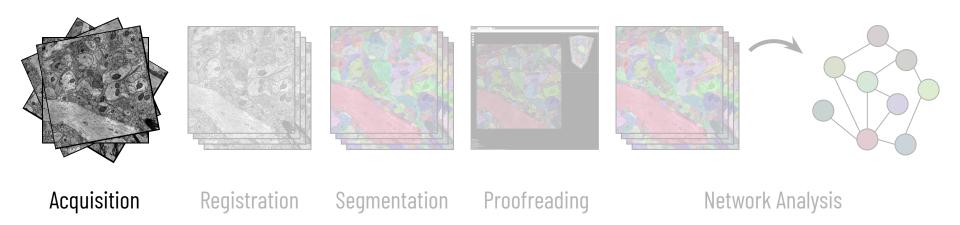
Behavior Structure Function

Goal: Extract the wiring diagram from a brain



Behavior Structure Function

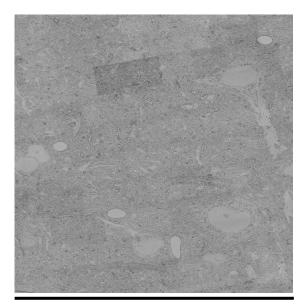
Connectomics Pipeline



Suissa-Peleg et al., Automatic Neural Reconstruction from Petavoxel of Electron Microscopy, Microscopy and Microanalysis 2016 Schalek et al., Imaging a 1 mm³ Volume of Rat Cortex Using a MultiBeam SEM, Microscopy and Microanalysis, 2016

Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

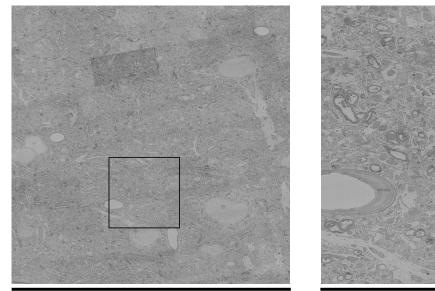


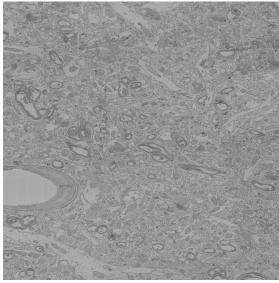
100 µm

Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

Can image 1 mm³ of image data (2 PB) in 6 months



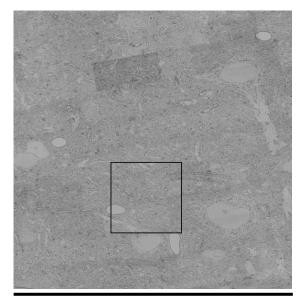


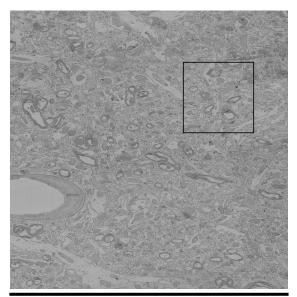
100 μm 25 μm

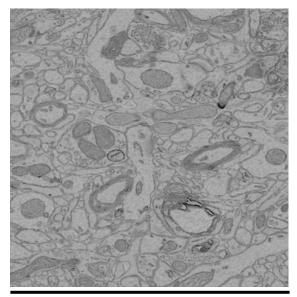
Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

Can image 1 mm³ of image data (2 PB) in 6 months





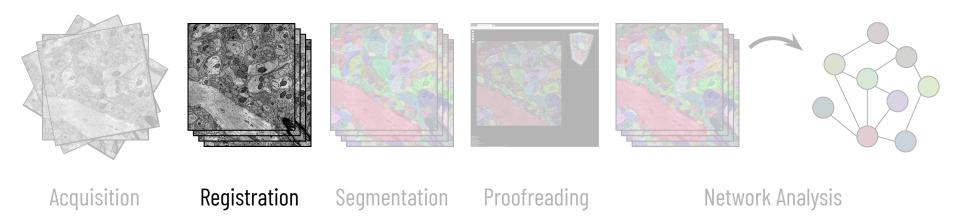


100 µm

25 µm

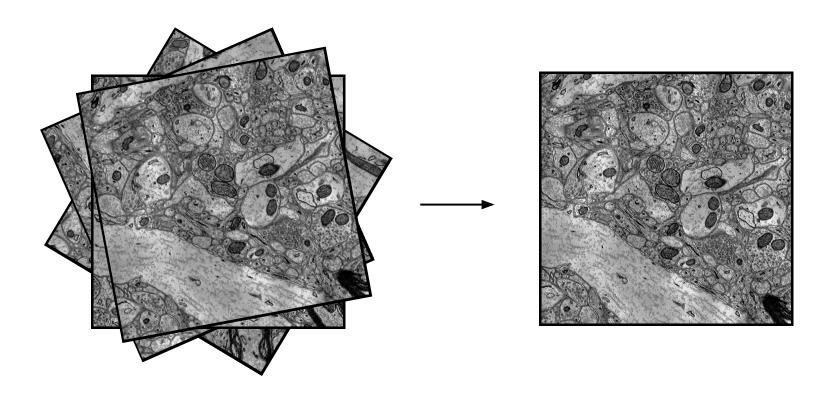
6250 nm

Connectomics Pipeline

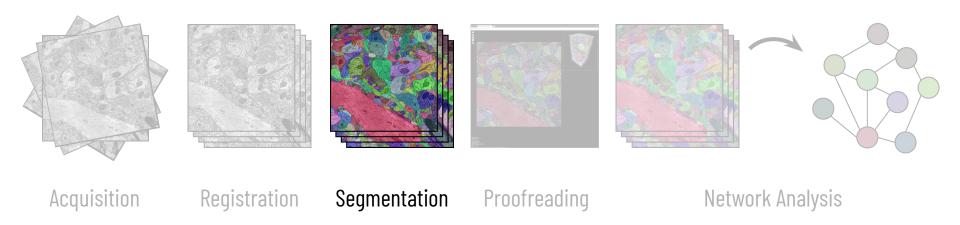


Saalfield et al., Elastic Volume Reconstruction from Series of Ultra-thin Microscopy Sections, Nature 2012 Khairy et al., Joint Deformable Registration of Large EM Image Volumes: A Matrix Solver Approach, 2018

Registration



Connectomics Pipeline

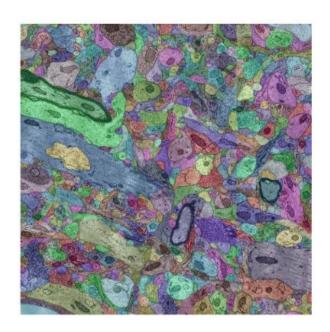


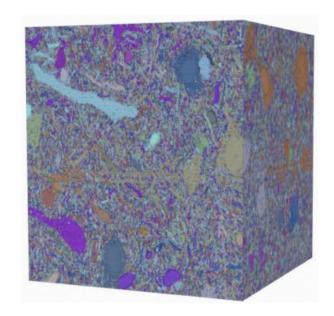
Nunez-Iglesias et al., Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLoS ONE 2014 Cicek et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016 Januszewski et al., Flood-Filling Networks, 2016

Zeng et al., DeepEM3D: Approaching Human-Level Performance on 3D Anisotropic EM Image Segmentation, Bioinformatics 2017 Pape et al., Solving Large Multicut Problems for Connectomics via Domain Decomposition, ICCV 2017 Lee et al., Superhuman Accuracy on the SNEMI3D Connectomics Challenge, 2017

Label Volumes

Two voxels have the same label only if they belong to the same neuron

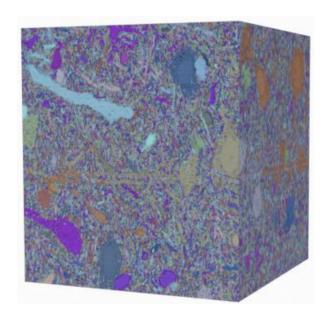




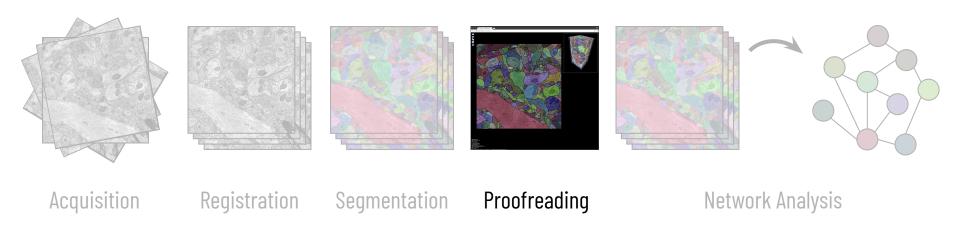
Label Volumes

Two voxels have the same label only if they belong to the same neuron

Typically use 32 or 64 bits per voxel to label each segment uniquely



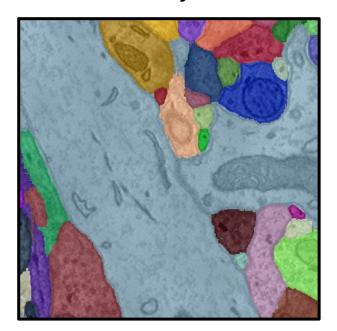
Connectomics Pipeline



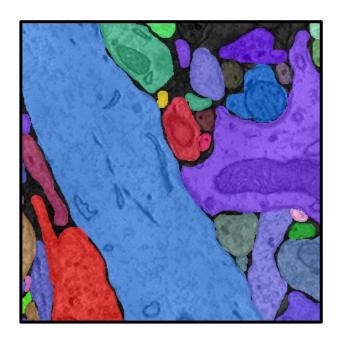
Haehn et al., Design and Evaluation of Interactive Proofreading Tools for Connectomics, IEEE VIS 2014 Zung et al., An Error Detection and Correction Framework for Connectomics, NIPS 2017 Haehn et al., Guided Proofreading of Automatic Segmentations for Connectomics, CVPR 2018

Merge Errors

Automatic Segmentation

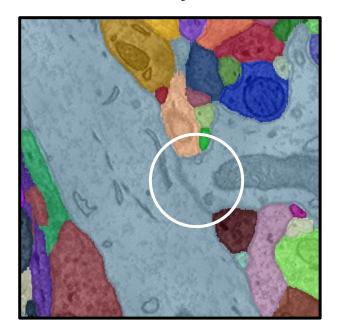


Ground Truth

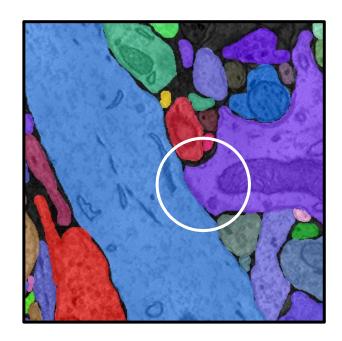


Merge Errors

Automatic Segmentation

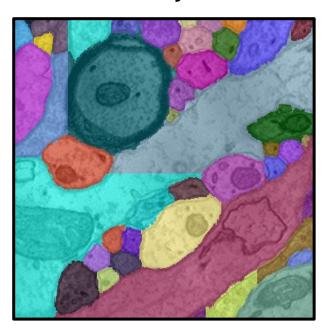


Ground Truth

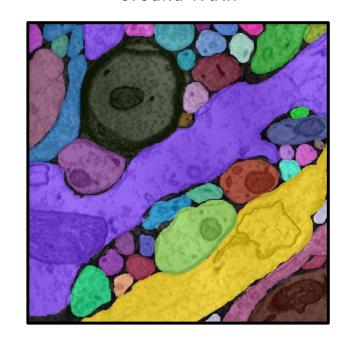


Split Errors

Automatic Segmentation

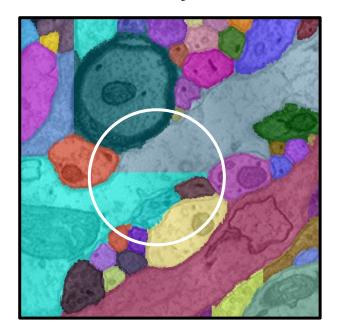


Ground Truth

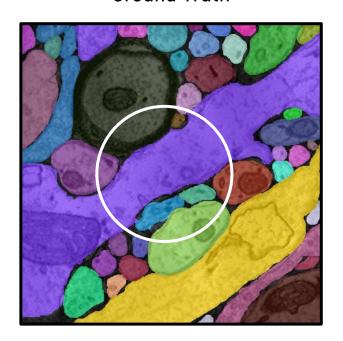


Split Errors

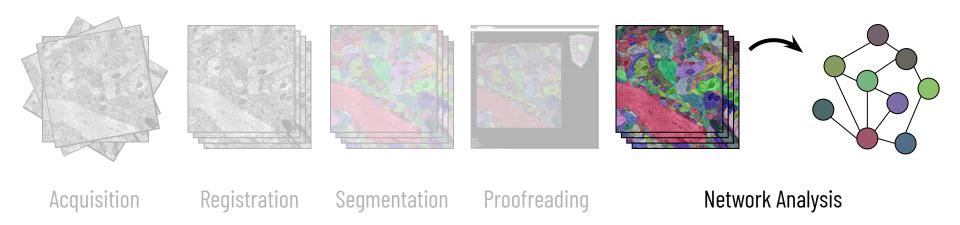
Automatic Segmentation



Ground Truth

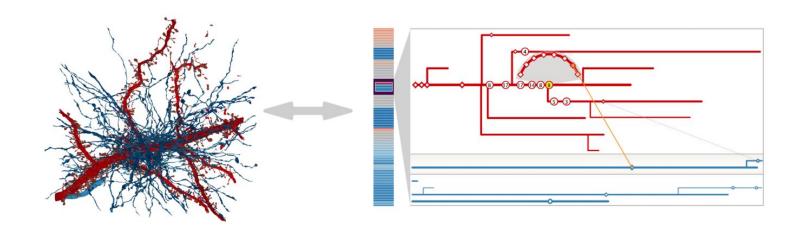


Connectomics Pipeline

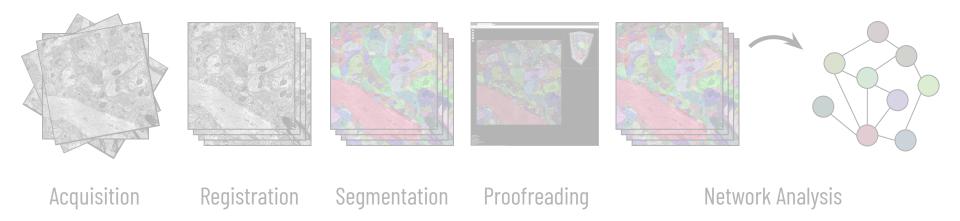


Sorger et al., neuroMAP - Interactive Graph-Visualization of the Fruit Fly's Neural Circuit, BioVIS 2013
Al-Awami et al., NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity, IEEE VIS 2014
Haehn et al., Scalable Interactive Visualization for Connectomics, MDPI Informatics 2017

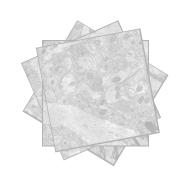
Network Analysis



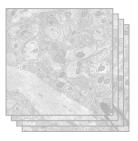
Connectomics Pipeline



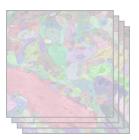
Connectomics Pipeline



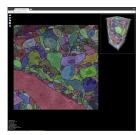
Acquisition



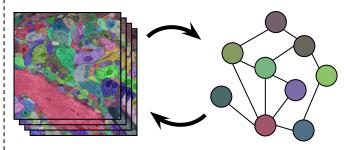
Registration



Segmentation



Proofreading



Network-Level Correction

Biologically-Constrained Graphs for Global Connectomics Reconstruction

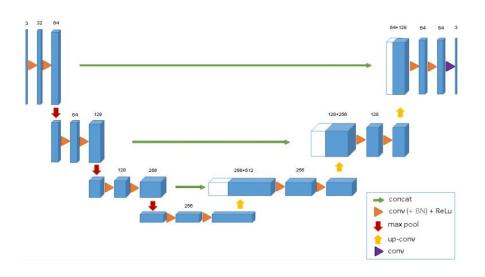
Brian Matejek¹, Daniel Haehn¹, Haidong Zhu², Donglai Wei¹, Toufiq Parag³, Hanspeter Pfister¹

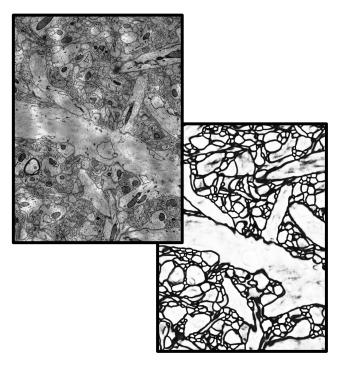
¹Harvard University

²Tsinghua University

³Comcast Research

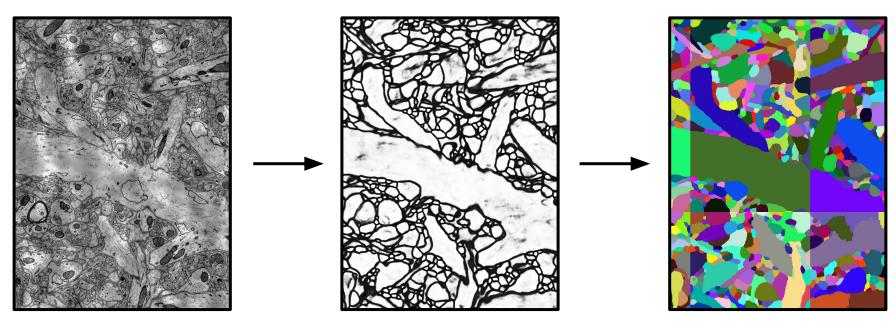
Affinity Generation





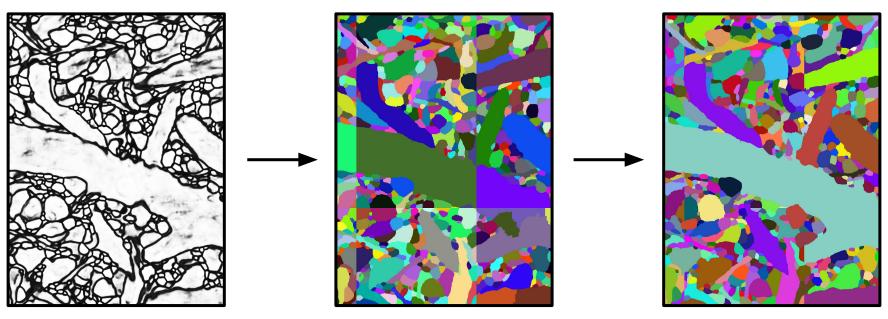
Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015 Cicek et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016

3D Watershed on Affinities



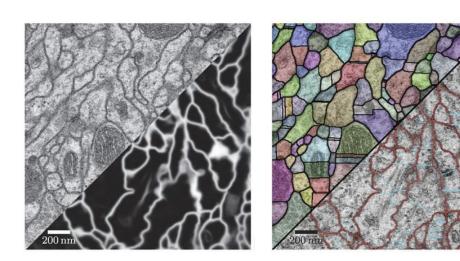
Zlateski et al., Image Segmentation by Size-Dependent Single Linkage Clustering of a Watershed Basin Graph, 2015
Funke et al., A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs, 2017
Zeng et al., DeepEM3D: Approaching Human-Level Performance on 3D Anisotropic EM Image Segmentation, Bioinformatics 2017

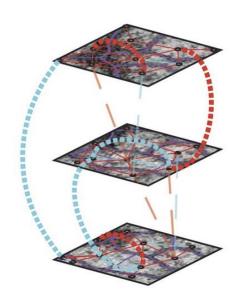
Agglomeration



Nunez-Iglesias et al., Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLoS ONE, 2013
Parag et al., A Context-Aware Delayed Agglomeration Framework for Electron Microscopy Segmentation, PLoS ONE 2015
Funke et al., A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs, 2017

Lifted Multicuts



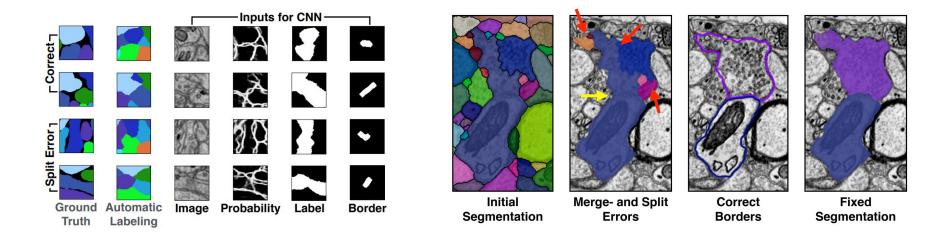


Beier et al., Multicut Brings Automated Neurite Segmentation Closer to Human Performance, Nature 2017

Errors

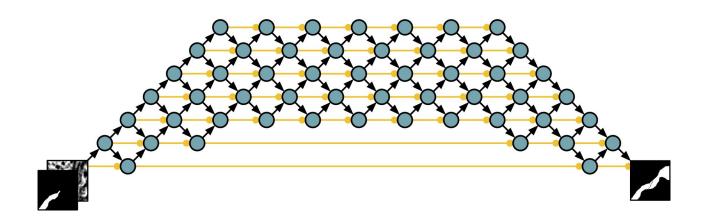
Automatic Segmentation Ground Truth

Guided Proofreading



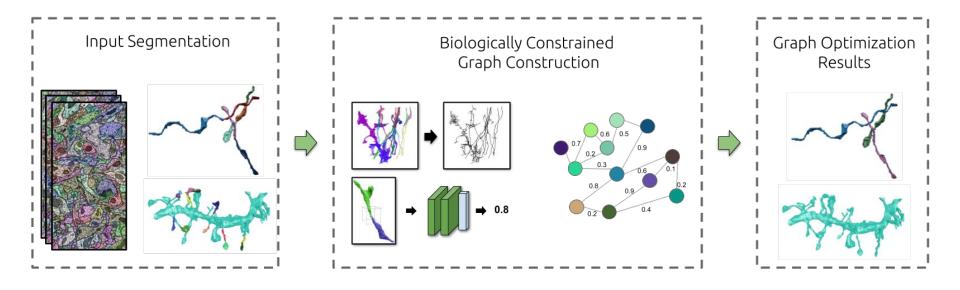
Haehn et al., Guided Proofreading of Automatic Segmentations for Connectomics, CVPR 2018

Automatic Proofreading

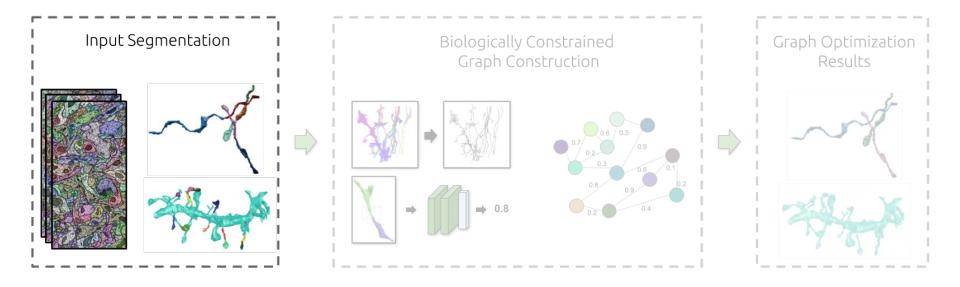


Zung et al., An Error Detection and Correction Framework for Connectomics, NIPS 2017

Proposed Automatic Error Correction

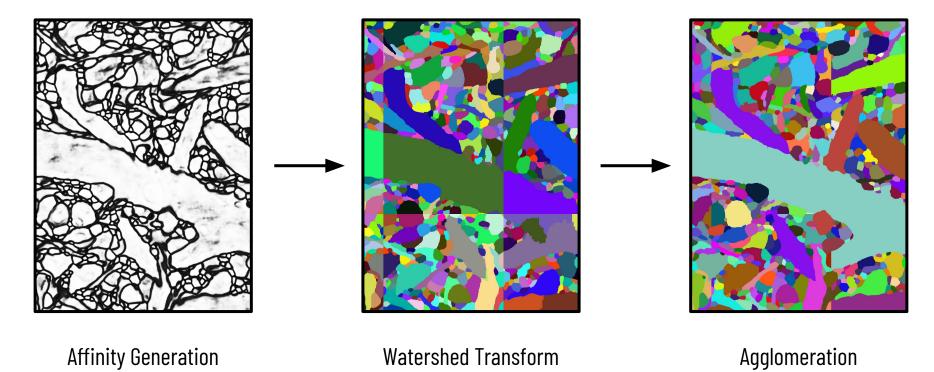


Input



Traditional Two-Stage Frameworks

Existing segmentation strategies typically produce over-segmentations



Traditional Two-Stage Frameworks

Existing segmentation strategies typically produce over-segmentations

We use the result from an existing strategy as our input

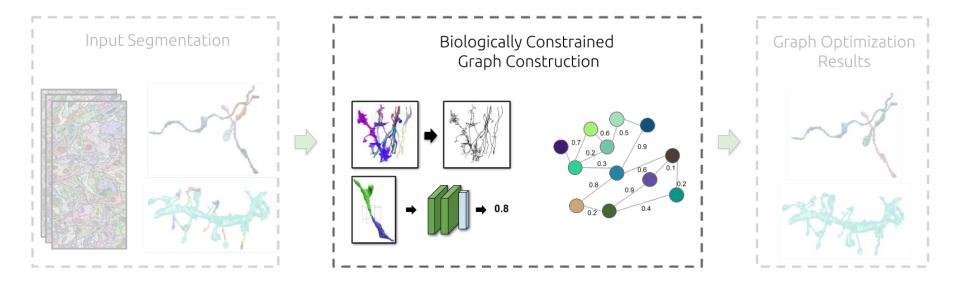
Traditional Two-Stage Frameworks

Existing segmentation strategies typically produce over-segmentations

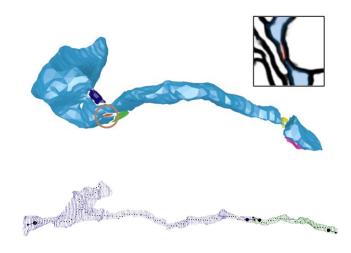
We use the result from an existing strategy as our input

Allows us to leverage larger local context when forming our graph

Goal: Construct a graph with as few nodes and edges as possible

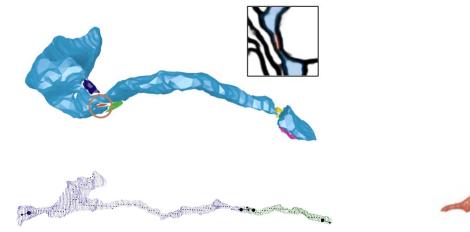


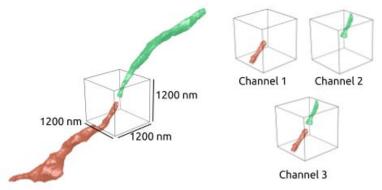
Graph Construction with Biological Constraints



Hand-Designed Geometric Constraints

Graph Construction with Biological Constraints





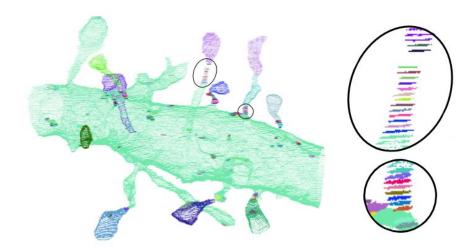
Hand-Designed Geometric Constraints Machine-Learned Morphologies

Node Generation

Existing segmentation strategies produce a large number of small segments

Node Generation

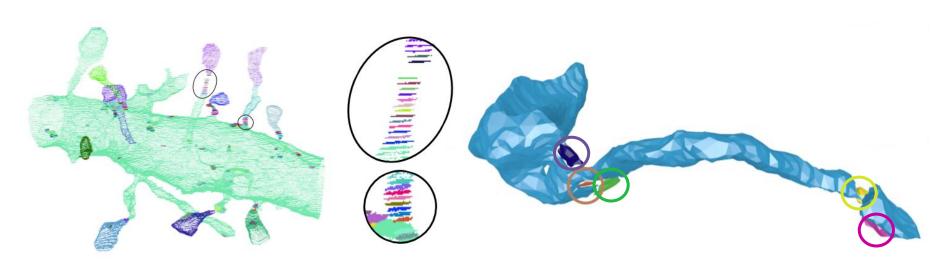
Existing segmentation strategies produce a large number of small segments



Singleton Slices

Node Generation

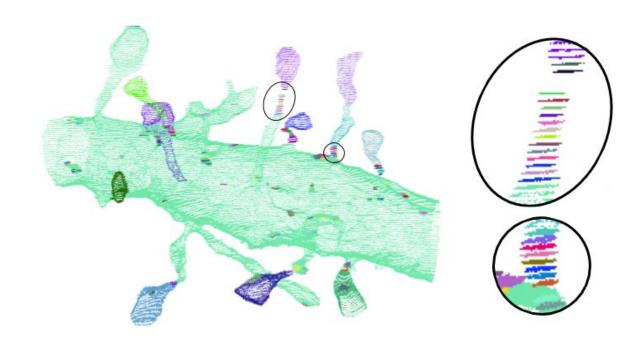
Existing segmentation strategies produce a large number of small segments



5 Small Segments

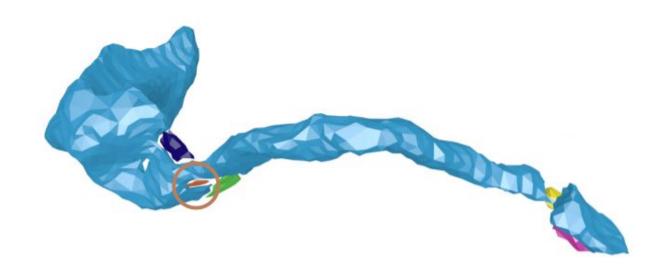
Singleton Removal

Merge adjacent singleton slices that have an Intersection-over-Union above 0.30



Merging Other Small Segments

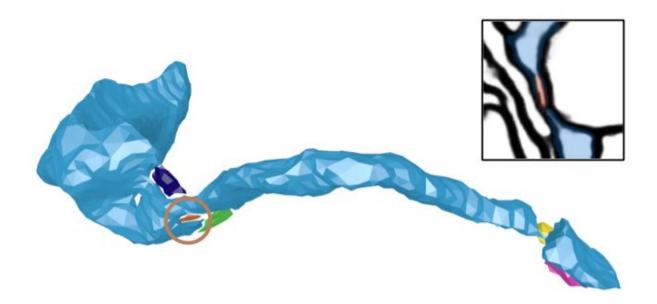
Up to 80% of remaining segments are very small with little shape information



Merging Other Small Segments

Up to 80% of remaining segments are very small with little shape information

These small segments often occur at narrow locations with noisy affinities



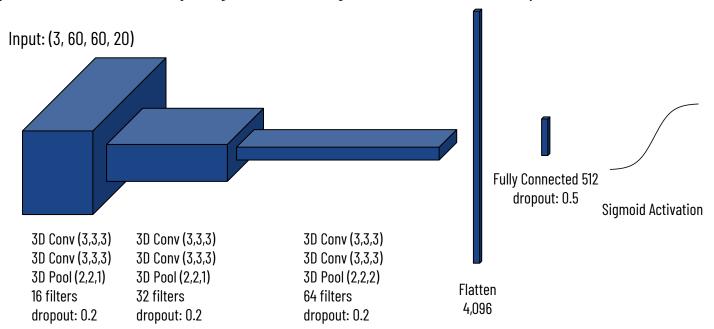
Small Segment Merging

Each small segment is merged with a nearby large segment

Small Segment Merging

Each small segment is merged with a nearby large segment

A 3D CNN predicts the most likely neighbor to belong to the same neuronal process



Each segment has too many adjacent neighbors to use the adjacency matrix

Each segment has too many adjacent neighbors to use the adjacency matrix

Typical Segment

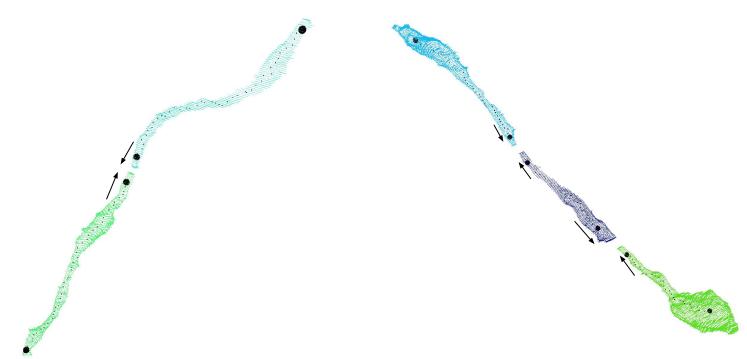
Each segment has too many adjacent neighbors to use the adjacency matrix

Typical Segment

103 Adjacent Neighbors

Handcrafted Geometric Constraints

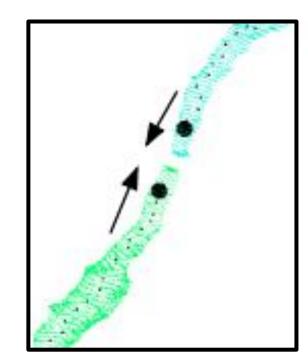
Use directional information to identify potential split error locations



Skeleton Generation

Approximate volume shapes with 1D skeletons and identify potential split errors based on skeletal geometry

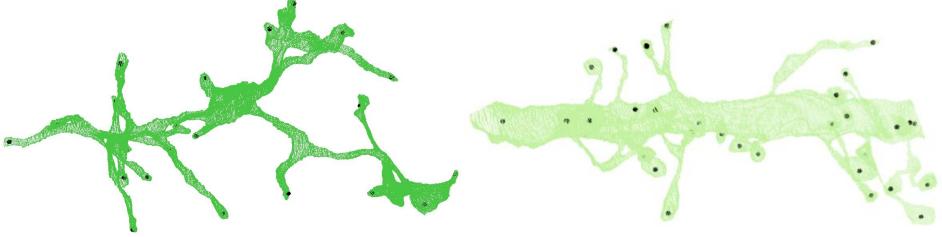
around the endpoints



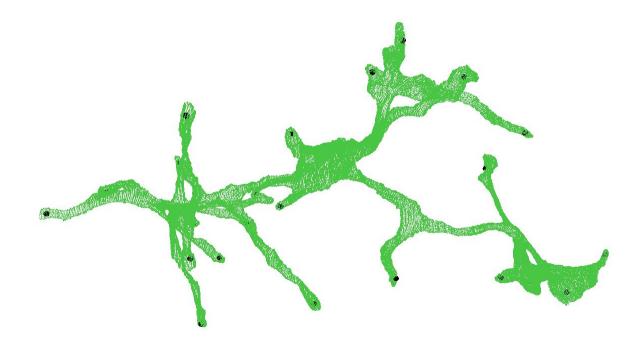
Many skeleton generation strategies have been developed in the connectomics and volume processing communities

Many skeleton generation strategies have been developed in the connectomics and volume processing communities

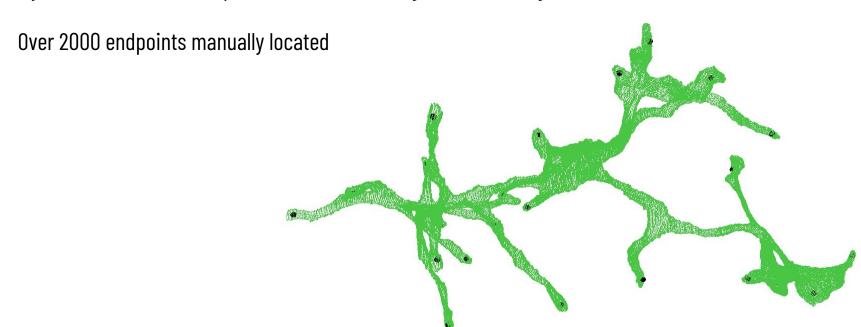
We create and publish a skeleton benchmark dataset to test existing and novel strategies on connectomics data



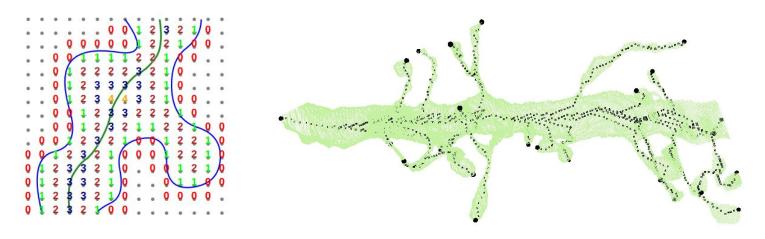
Manually identified desired endpoint locations on 500 ground truth segments in the Kasthuri dataset



Manually identified desired endpoint locations on 500 ground truth segments in the Kasthuri dataset

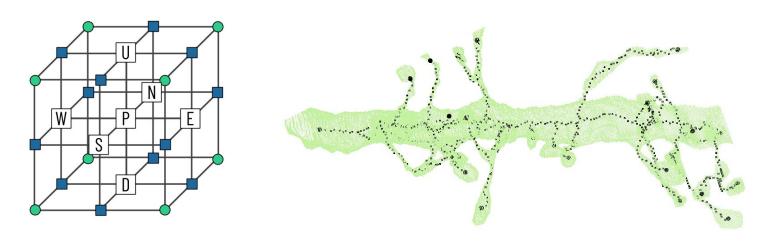


We consider three different skeleton generation techniques: TEASER



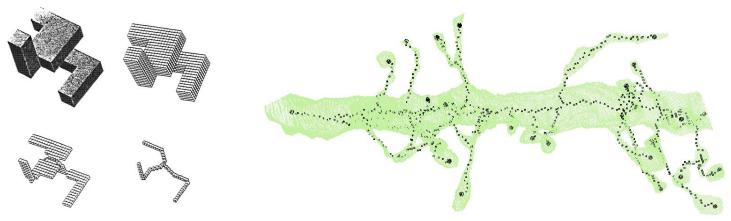
Sato et al., TEASER: Tree-structure Extraction Algorithm for Accurate and Robust Skeletons, Pacific Conference on Computer Graphics and Applications, 2000.

We consider three different skeleton generation techniques: TEASER, Isthmus Thinning



Palagyi, K., A Sequential 3D Curve-Thinning Algorithm Based on Isthmuses, International Symposium on Visual Computing, 2014.

We consider three different skeleton generation techniques: TEASER, Isthmus Thinning, and Medial Surface Thinning



Lee et al., Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms, CVGIP, 1994.

We consider three different skeleton generation techniques: TEASER, Isthmus Thinning, and Medial Surface Thinning

We evaluated nearly 1000 different parameter configurations to find the best results on the benchmark

We consider three different skeleton generation techniques: TEASER, Isthmus Thinning, and Medial Surface Thinning

We evaluated nearly 1000 different parameter configurations to find the best results on the benchmark

A positive result is a generated endpoint within 800 nanometers of our manually labeled endpoint

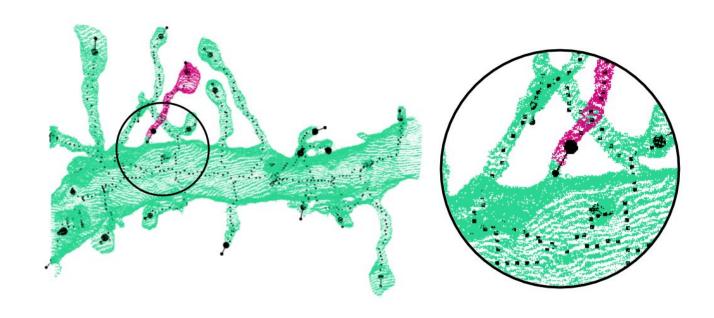
Isthmus thinning outperformed the existing methods in both endpoint accuracy and speed

Precision: 94.7% **Recall: 86.7%** F-Score: 90.5%

Two nodes receive an edge in the graph if one of the corresponding skeletons has an endpoint vector towards the other segment



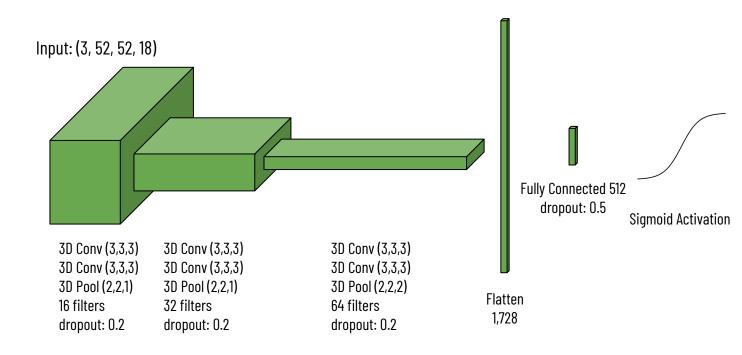
Endpoint must be within 500 nanometers of the other segment



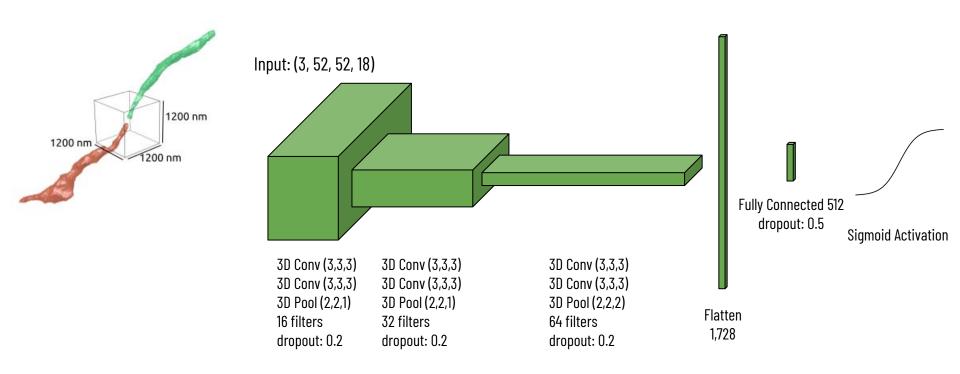
Machine-learned Morphologies

We train a VGG-style convolutional neural network to predict if two segments belong to the same neuronal process

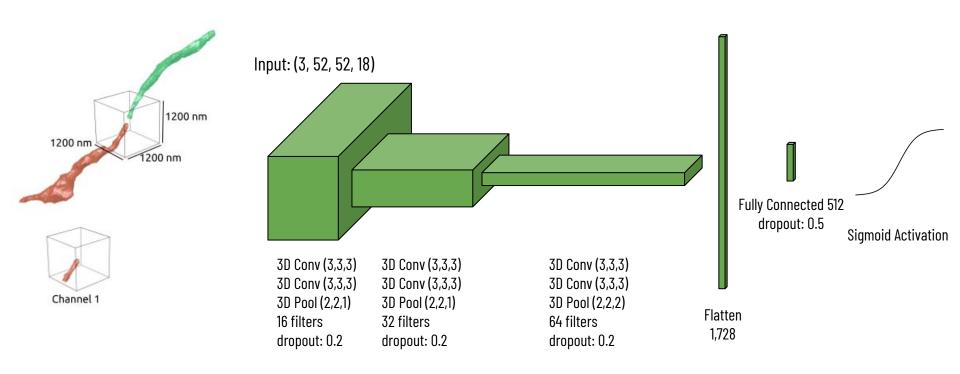
Architecture and Training Parameters



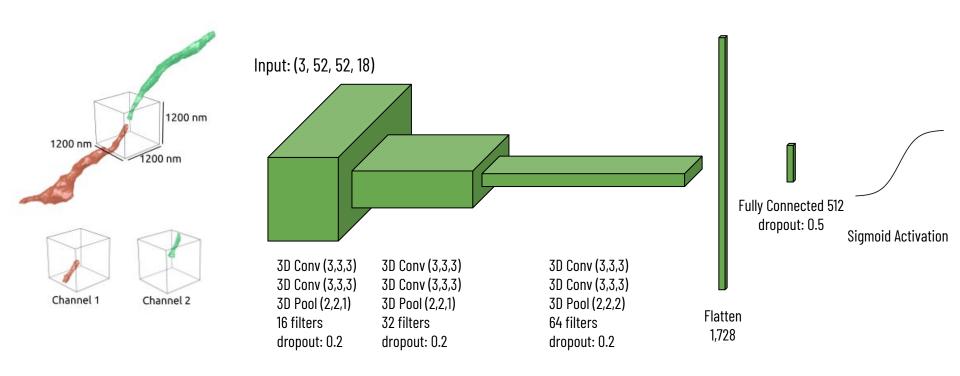
Architecture and Training Parameters



Architecture and Training Parameters

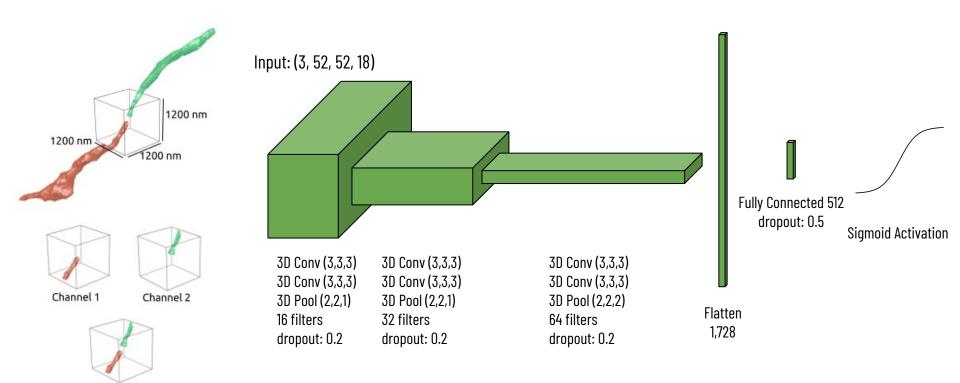


Architecture and Training Parameters



Architecture and Training Parameters

Channel 3

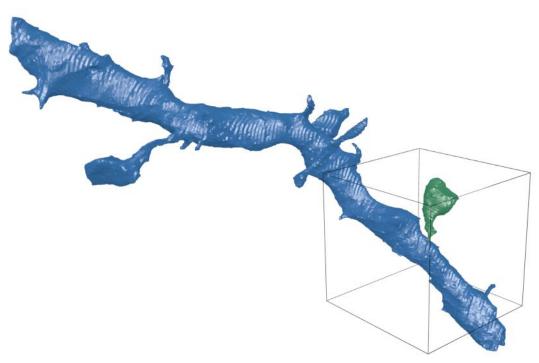


Regions of Interest

Too small and there is not enough local context

Regions of Interest

Too large and unnecessary detail inhibits learning

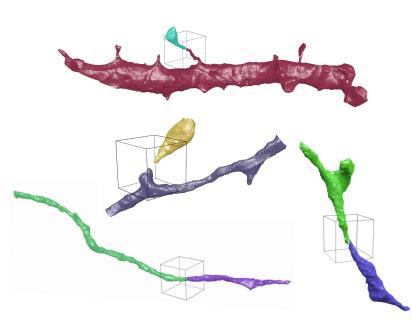


Regions of Interest

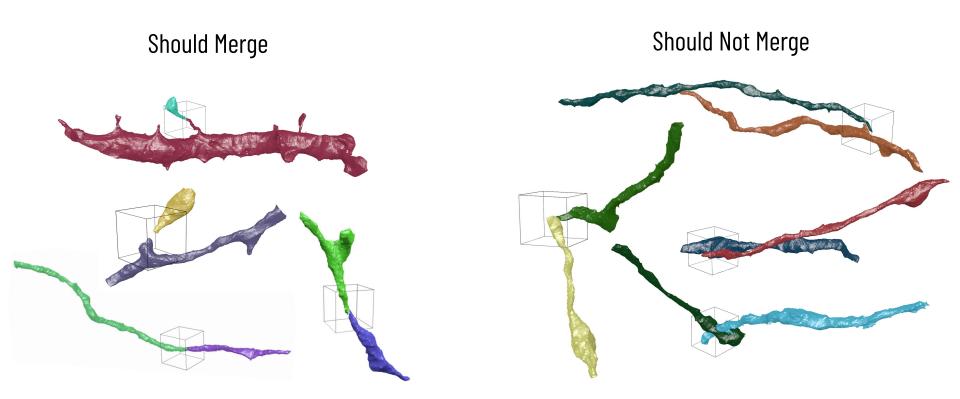
Found that cubes of size 1200 x 1200 x 1200 nm³ work well

Input Examples

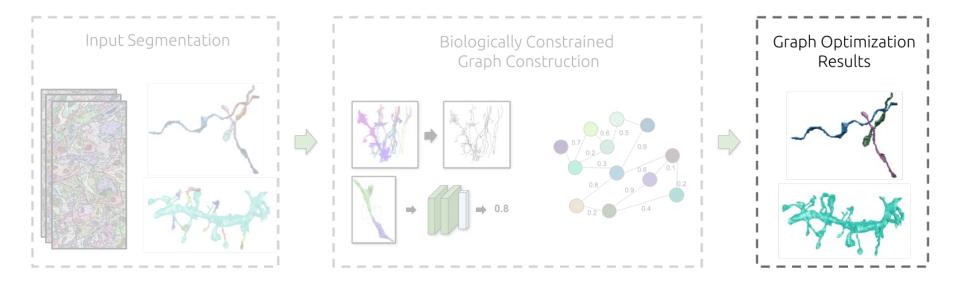
Should Merge



Input Examples



Goal: Partition graph into neuronal processes



Reformulate the segmentation problem as a multicut graph partitioning one

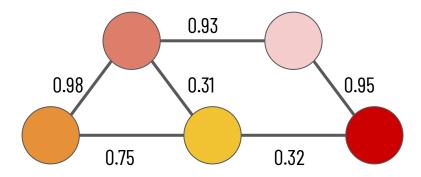
Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

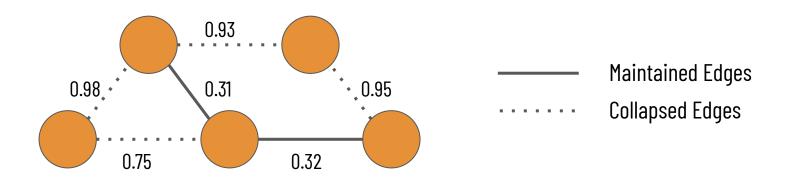
Guarantees a globally consistent solution



Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

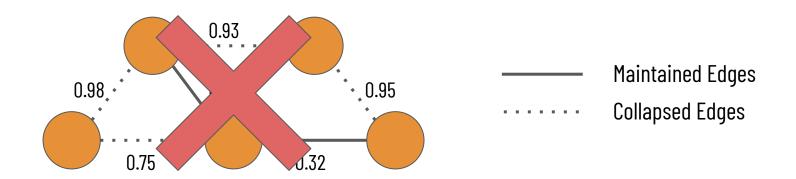
Guarantees a globally consistent solution



Reformulate the segmentation problem as a multicut graph partitioning one

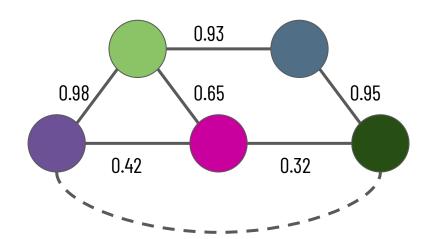
The final number of segments is not predetermined

Guarantees a globally consistent solution



Lifted Edges

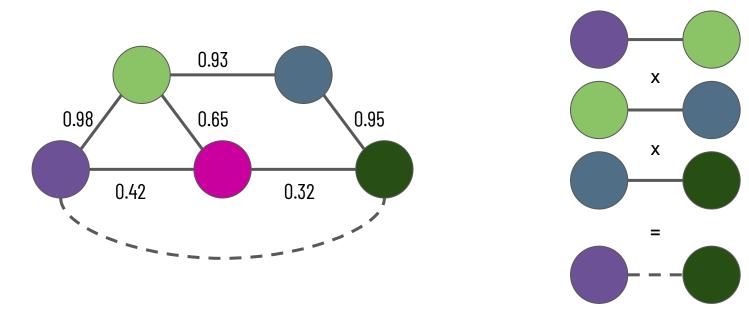
Represent long range probabilities of non-adjacent nodes belonging to the same neuron



Lifted Edges

Represent long range probabilities of non-adjacent nodes belonging to the same neuron

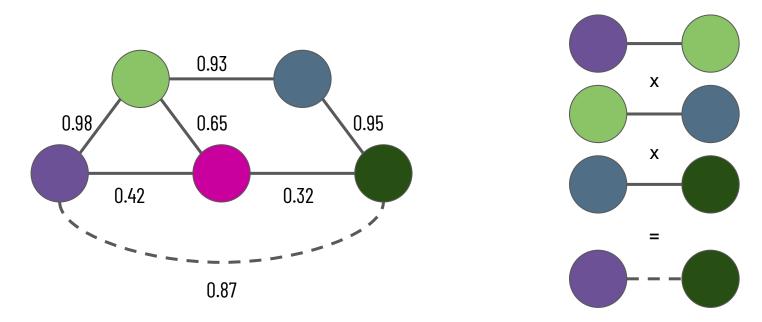
Take value of highest probability path between two nodes



Lifted Edges

Represent long range probabilities of non-adjacent nodes belonging to the same neuron

Take value of highest probability path between two nodes

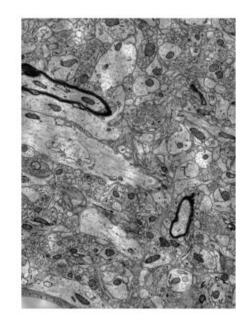


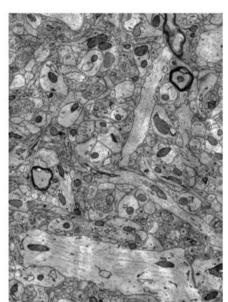
Datasets

Kasthuri

Princeton Neuroscience Institute

SNEMI3D





2 Volumes

6 x 6 x 30 nm³ / vx

1335 x 1809 x 338 vx

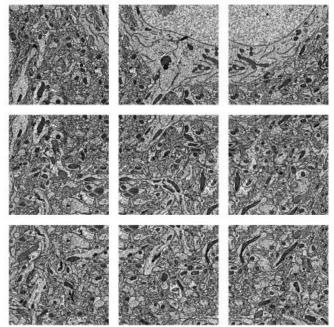
 $8.01 \times 10.85 \times 10.14 \ \mu m^3$

Datasets

Kasthuri

Princeton Neuroscience Institute

SNEMI3D



9 Volumes

2048 x 2048 x 256 vx

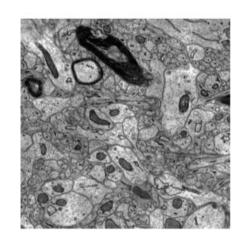
7.37 x 7.37 x 10.24 μm^3

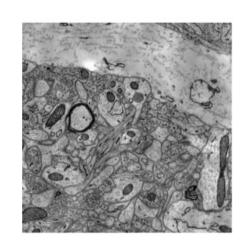
3.6 x 3.6 x 40 nm³ / vx

Datasets

Kasthuri

Princeton Neuroscience Institute





SNEMI3D

2 Volumes

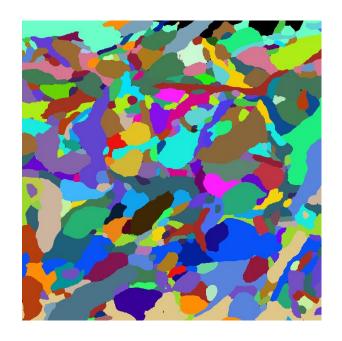
3 x 3 x 30 nm³ / vx

1024 x 1024 x 100 vx

 $3.07 \times 3.07 \times 3 \ \mu m^3$

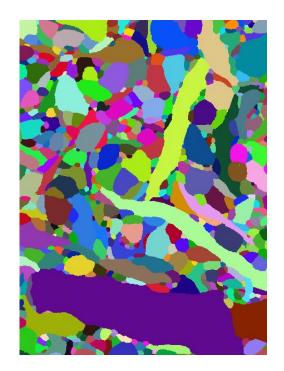
Input Segmentations

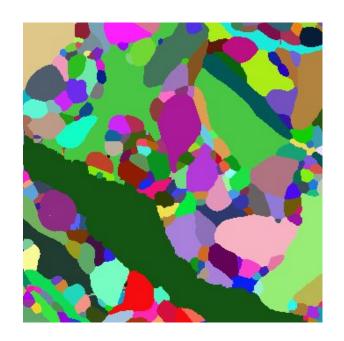
For the two PNI Test datasets, we use zwatershed and mean agglomeration



Input Segmentations

For the Kasthuri and SNEMI3D datasets, we use the waterz agglomeration strategy





Measure of entropy between segmentation and ground truth

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels

VI Merge: Increases if two voxels from different neurons have the same label

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels



VI Merge: Increases if two voxels from different neurons have the same label

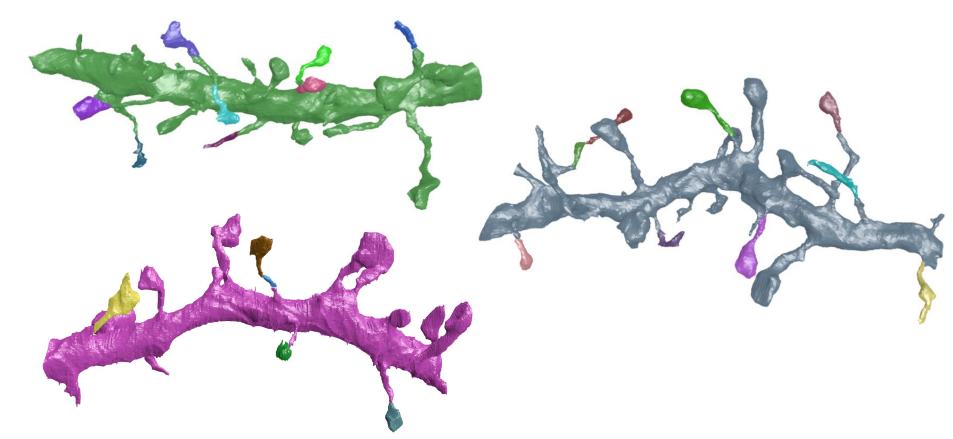
Total Variation of Information = VI Split + VI Merge

Variation of Information

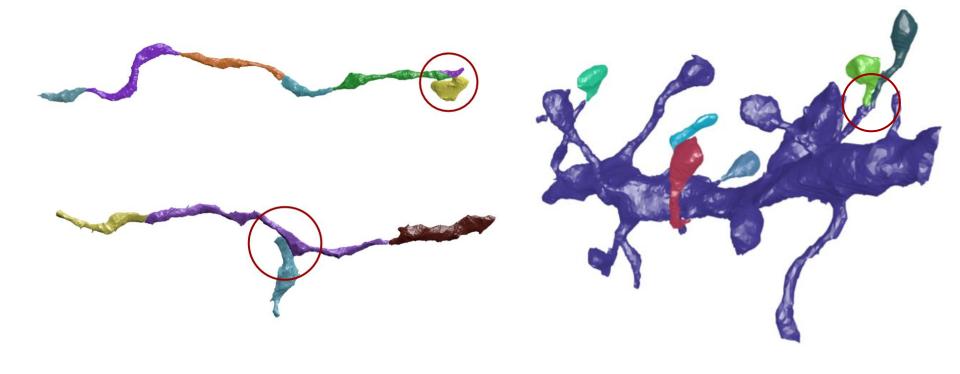
Dataset	Baseline	Proposed	Decrease
PNI Test One	0.491	0.388	-20.9%
PNI Test Two	0.416	0.297	-28.7%
Kasthuri Test	0.965	0.815	-15.6%
SNEMI3D	0.807	0.647	-19.8%

Qualitative Results

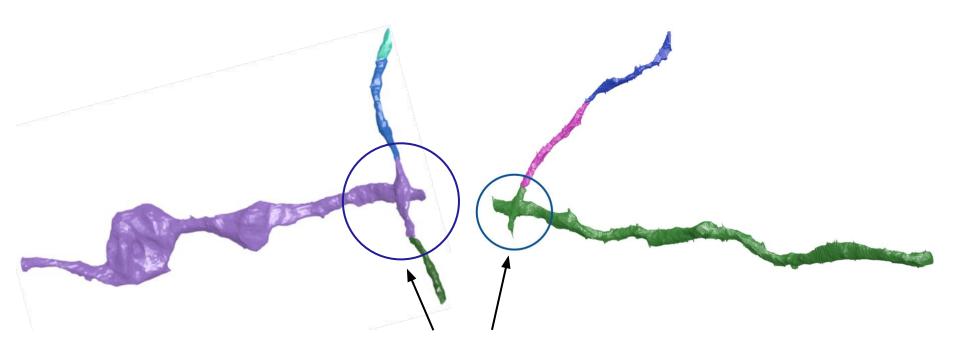
Qualitative Results



Failure Cases



Failure Cases



Errors in Input Segmentation

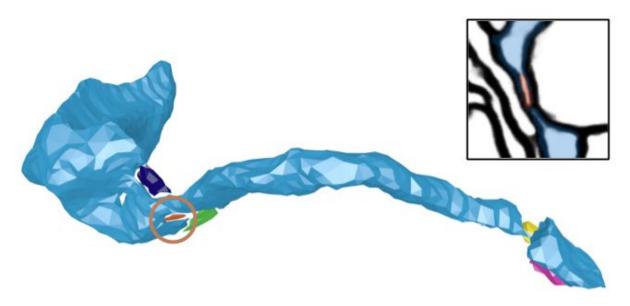
Ablation Studies: Node Generation

Goal: Merge all small segments with a nearby larger segment from the same neuronal process

Ablation Studies: Node Generation

Goal: Merge all small segments with a nearby larger segment from the same neuronal process

Baseline: How many small segments belong to the same neuron as the high affinity large neighbor?



Ablation Studies: Node Generation

Goal: Merge all small segments with a nearby larger segment from the same neuronal process

Baseline: How many small segments belong to the same neuron as the high affinity large neighbor?

Dataset	Baseline (↑)	Proposed (↑)
PNI Test One	305/521 (36.9%)	686/129 (80.2%)
PNI Test Two	185/281 (39.7%)	444/75 (85.5%)
Kasthuri Test	4,514/8,604 (52.5%)	6,623/2,020 (76.6%)

The number of correctly merged small segments versus the number of incorrectly merged segments

Ablation Studies: Edge Generation

Goal: Identify all split errors while minimizing the number of total edges in the graph

Ablation Studies: Edge Generation

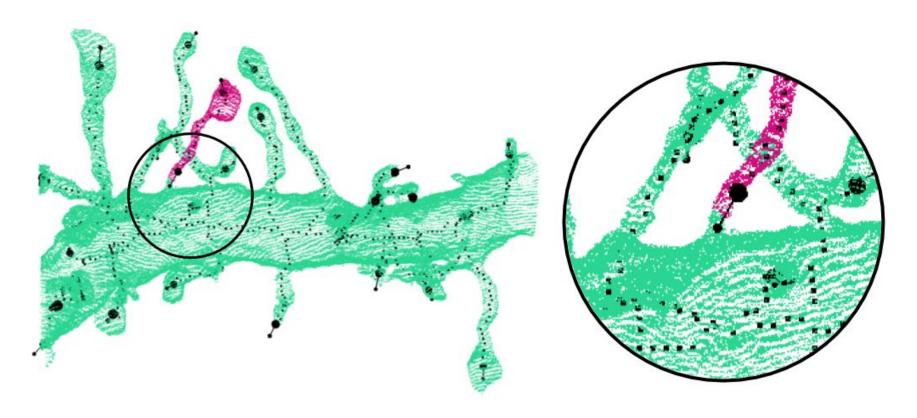
Goal: Identify all split errors while minimizing the number of total edges in the graph

Baseline: How many total edges are there in the adjacency graph?

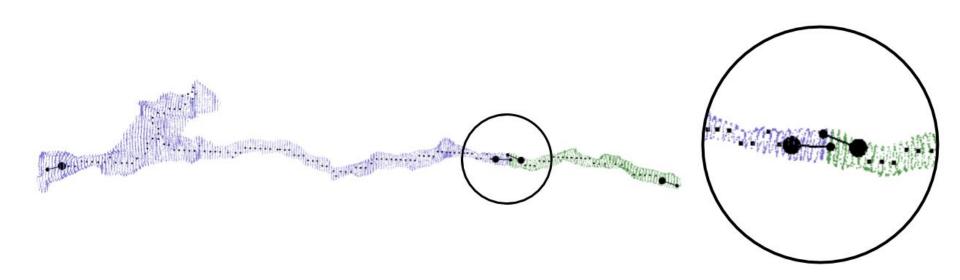
Dataset	Baseline	Proposed	Edge Recall (↑/↓)
PNI Test One	528 / 25,619	417 / 10,074	79.0% / 39.3%
PNI Test Two	460 / 30,388	370 / 11,869	80.4% / 39.1%
Kasthuri Test	1,193 / 43,951	936 / 18,168	78.5% / 41.3%

The number of edges in the graph that correspond to split errors, the total number of edges, and the recall

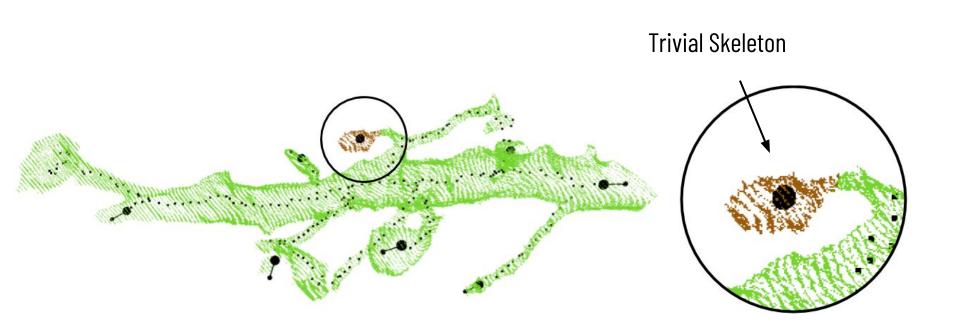
Ablation Studies: Edge Generation



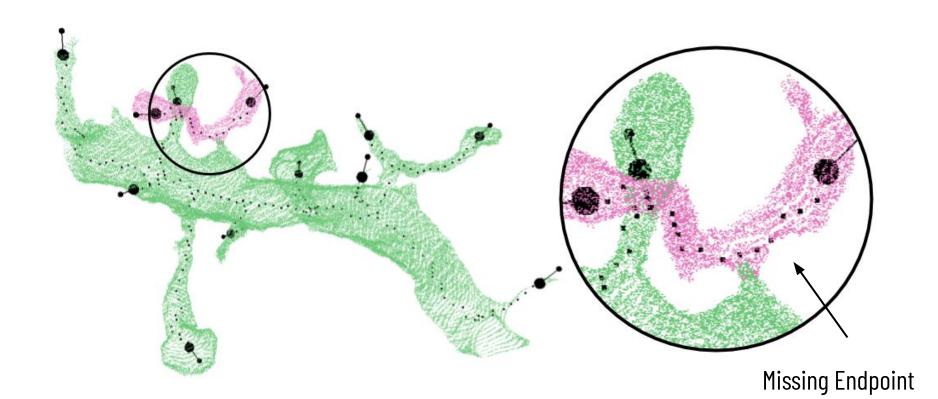
Ablation Studies: Edge Generation



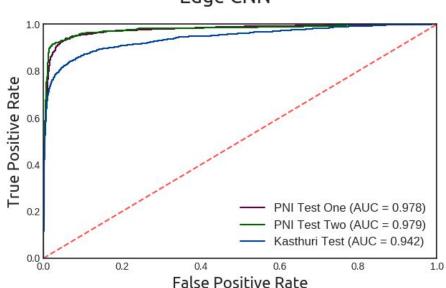
Edge Generation Failure Cases



Edge Generation Failure Cases



Ablation Studies: Edge Weight Assignment



Accuracies:

PNI Test One: 96.4%

PNI Test Two: 97.2%

Kasthuri: 93.4%

Running Times

Time to process a gigavoxel dataset

Step Running Tin		
Node Generation	281 seconds	
Edge Generation	351 seconds	
Lifted Multicut	13 seconds	
Total	10.75 minutes	

Efficient Correction for EM Connectomics with Skeletal Representation

Konstantin Dmitriev¹, Toufiq Parag², Brian Matejek², Arie Kaufman¹, Hanspeter Pfister²

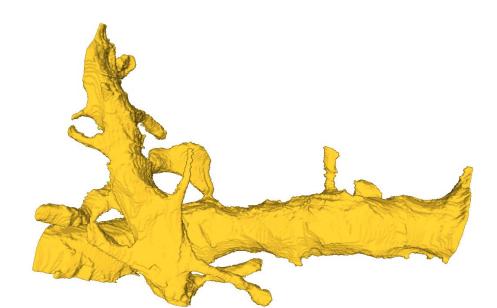
¹Stony Brook University

²Harvard University

Hard to efficiently correct since the search space of possible errors is very large

Hard to efficiently correct since the search space of possible errors is very large

However, still occur in all segmentation strategies



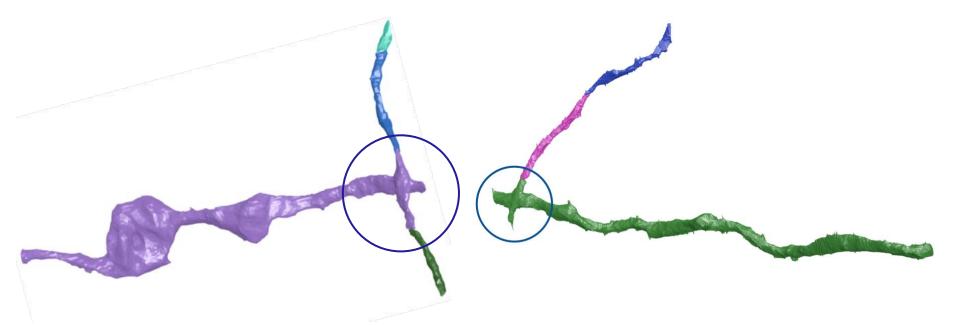
Hard to efficiently correct since the search space of possible errors is very large

However, still occur in all segmentation strategies



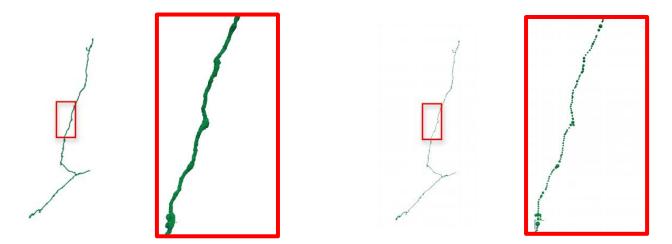
Hard to efficiently correct since the search space of possible errors is very large

However, still occur in all segmentation strategies



Skeleton Generation

Use NeuTu to generate skeletons for all segments

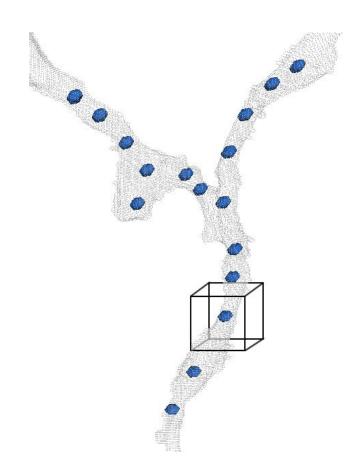


Zhao, T. et al., NeuTu: Software for Collaborative, Large Scale, Segmentation-Based Connectome Reconstruction, Frontiers in Neural Circuits, 2018.

Skeleton Generation

Use NeuTu to generate skeletons for all segments

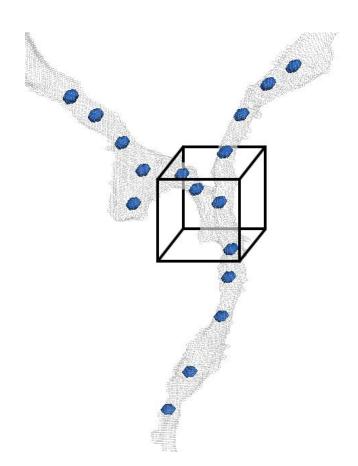
Reduce search locations to skeleton points



Skeleton Generation

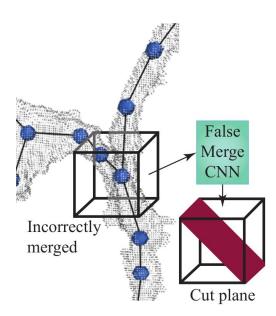
Use NeuTu to generate skeletons for all segments

Reduce search locations to skeleton points



Identifying Merge Errors

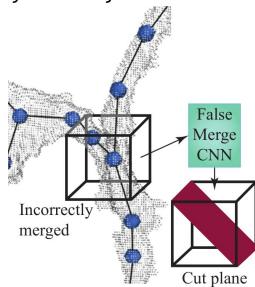
We use a CNN that takes the segmentation and image data as input and produces a split candidate

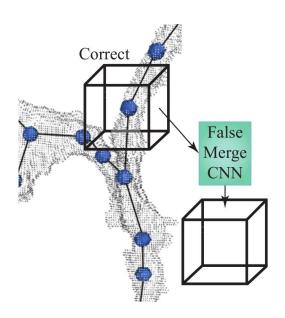


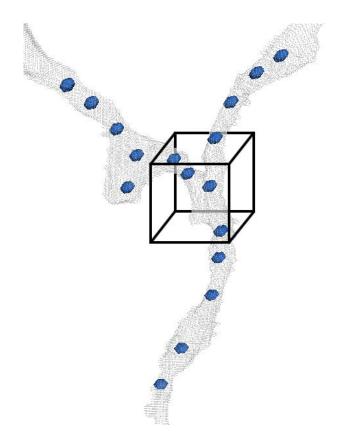
Identifying Merge Errors

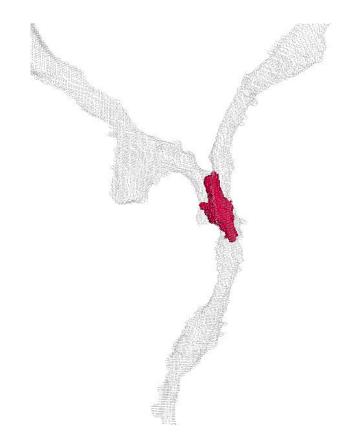
We use a CNN that takes the segmentation and image data as input and produces a split candidate

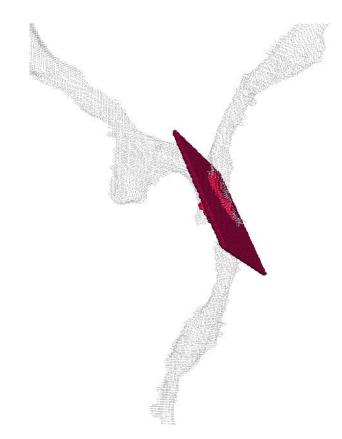
Correctly segmented regions return no

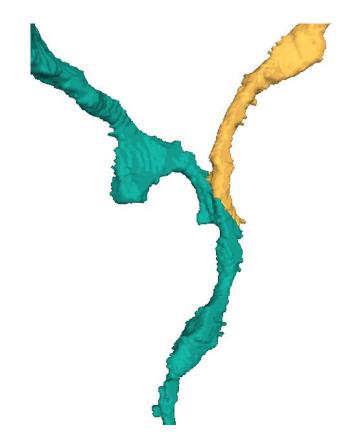




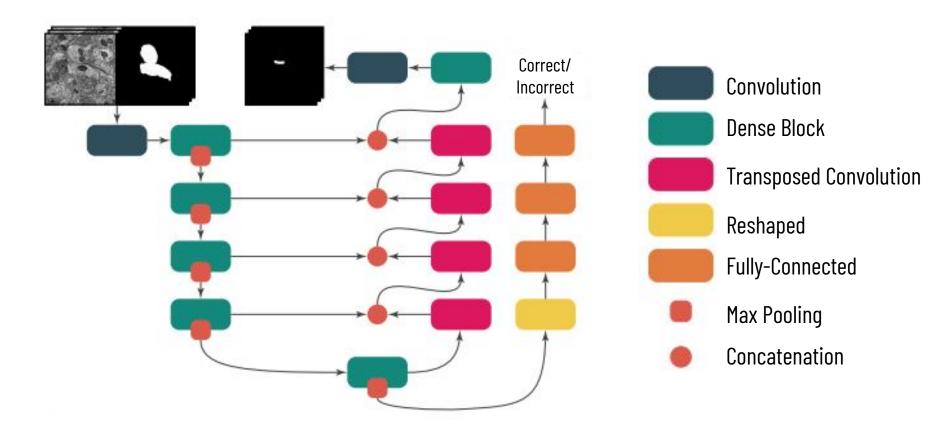








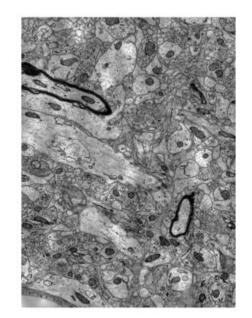
Network Architecture

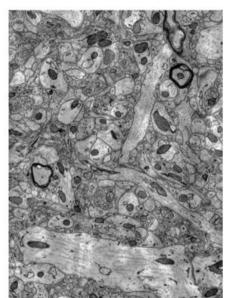


Datasets

Kasthuri

Princeton Neuroscience Institute





2 Volumes

6 x 6 x 30 nm³ / vx

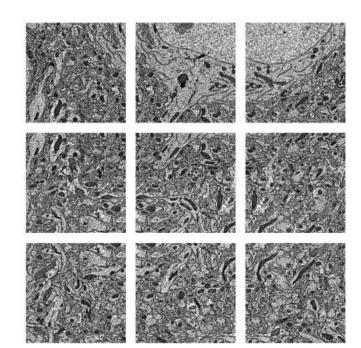
1335 x 1809 x 338 vx

 $8.01 \times 10.85 \times 10.14 \ \mu m^3$

Datasets

Kasthuri

Princeton Neuroscience Institute



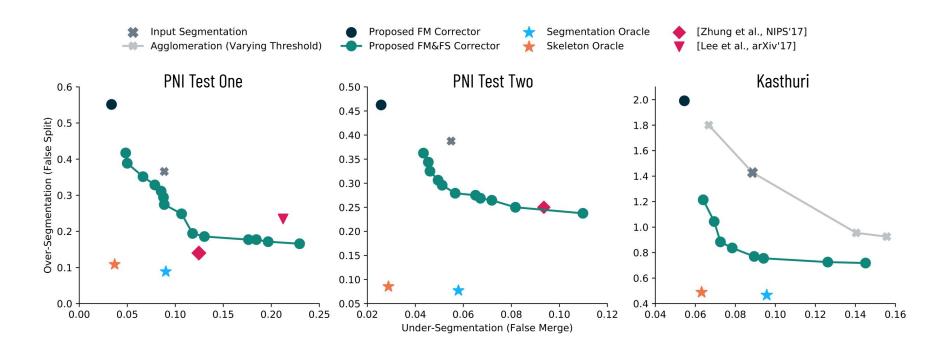
9 Volumes

3.6 x 3.6 x 40 nm³ / vx

2048 x 2048 x 256 vx

7.37 x 7.37 x 10.24 μm^3

Results



Search Space Reduction

Size	PNI Test One	PNI Test Two	Kasthuri
Volume Size	1.074 x 10 ⁹ vx	1.074 x 10 ⁹ vx	0.816 x 10 ⁹ vx
Query Points	40,621 pts	41,513 pts	62,815 pts
Search Reduction	26,433x	25,865x	12,994x

Research Sponsors

This research was supported in part by NSF grants IIS-1447344, IIS-1607800, IIS-1527200, IIS-1607800, NRT-1633299, and CNS-1650499.

This research was supported in part by IARPA contract DI6PC00002.

Visual Computing Group

Hanspeter Pfister

Thank you!

Questions?