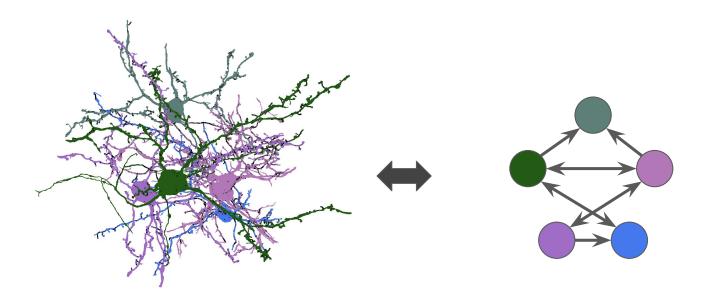
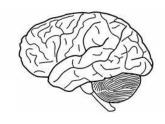
Biologically-Aware Algorithms for Connectomics



Brian Matejek

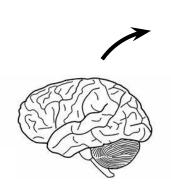
Advisor: Hanspeter Pfister Committee: Michael Mitzenmacher, Todd Zickler

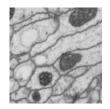
Goal: Extract the wiring diagram from a brain



Goal: Extract the wiring diagram from a brain

Nanometer-Resolution Imaging

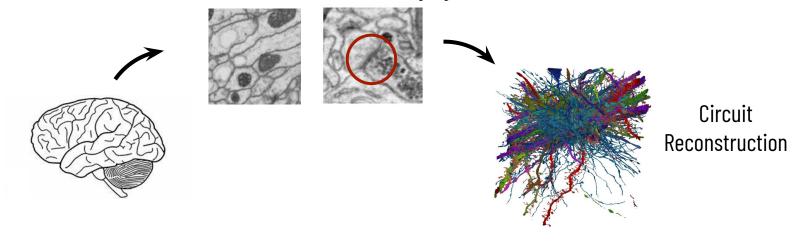




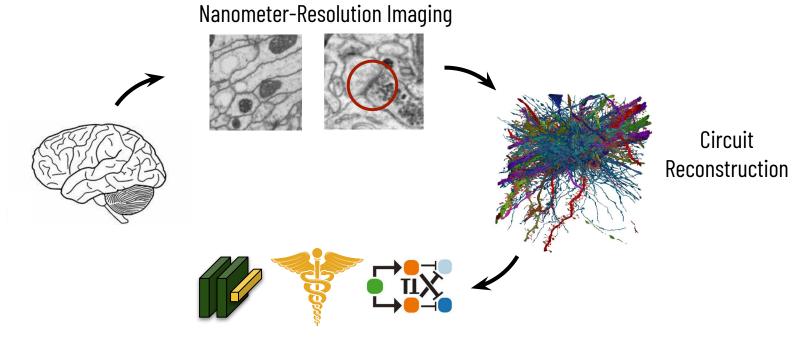


Goal: Extract the wiring diagram from a brain

Nanometer-Resolution Imaging

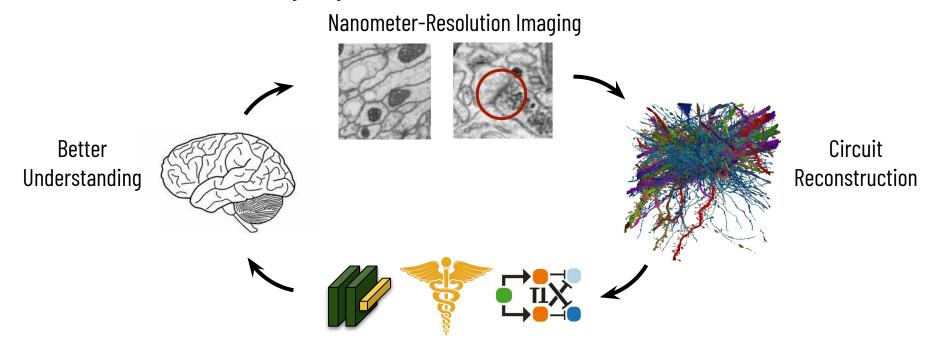


Goal: Extract the wiring diagram from a brain



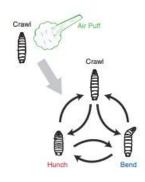
Improved Neural Networks, Medicine, Models

Goal: Extract the wiring diagram from a brain



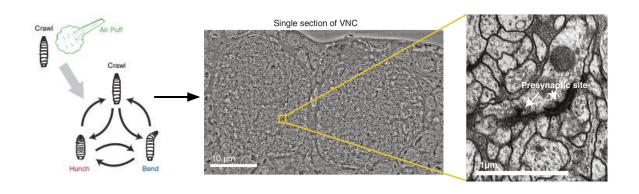
Improved Neural Networks, Medicine, Models

Goal: Extract the wiring diagram from a brain



Behavior

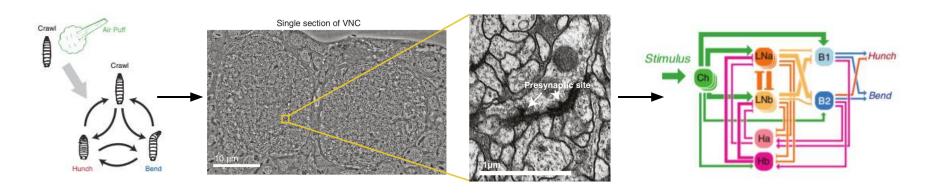
Goal: Extract the wiring diagram from a brain



Behavior

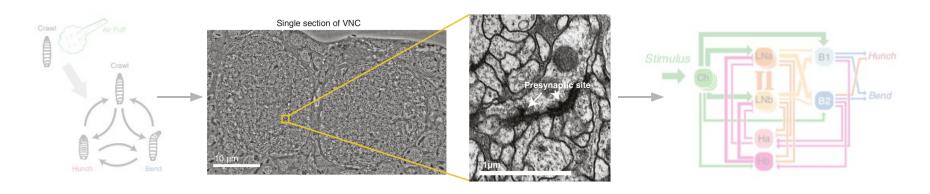
Structure

Goal: Extract the wiring diagram from a brain



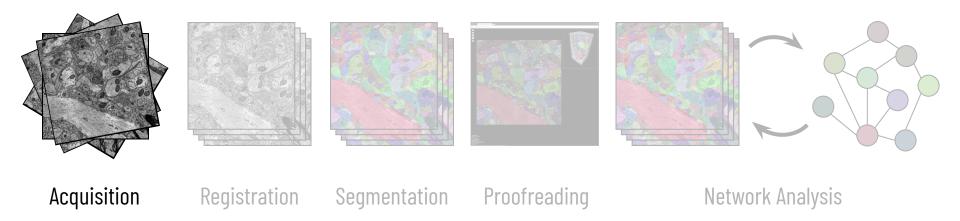
Behavior Structure Function

Goal: Extract the wiring diagram from a brain



Behavior Structure Function

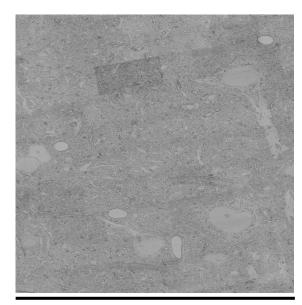
Connectomics Pipeline



Suissa-Peleg *et al.*, Automatic Neural Reconstruction from Petavoxel of Electron Microscopy, Microscopy and Microanalysis 2016 Schalek *et al.*, Imaging a 1 mm³ Volume of Rat Cortex Using a MultiBeam SEM, Microscopy and Microanalysis 2016 Xu *et al.*, Enhanced FIB-SEM Systems for Large-Volume 3D Imaging, biorxiv 2020 Yin *et al.*, A Petascale Automated Imaging Pipeline for Mapping Neuronal Circuits with High-Throughput Transmission Electron Microscopy, Nature Communications 2020

Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

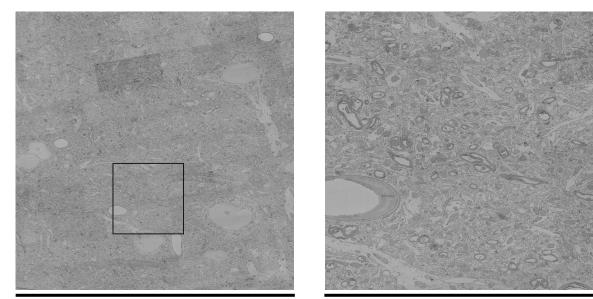


100 µm

Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

Can image 1 mm³ of image data (2 PB) in 6 months



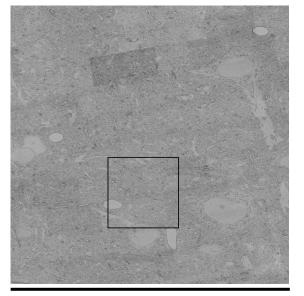
100 µm

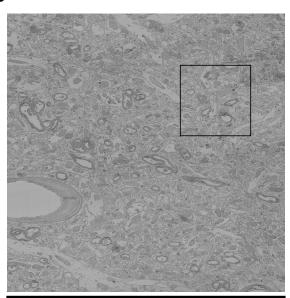
25 µm

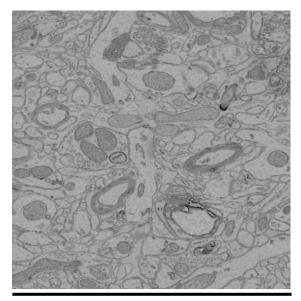
Image Acquisition

Multi-beam electron microscopes collect 1 TB of raw image data every hour

Can image 1 mm³ of image data (2 PB) in 6 months





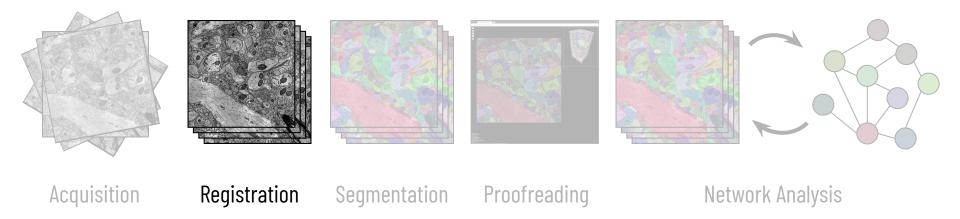


100 µm

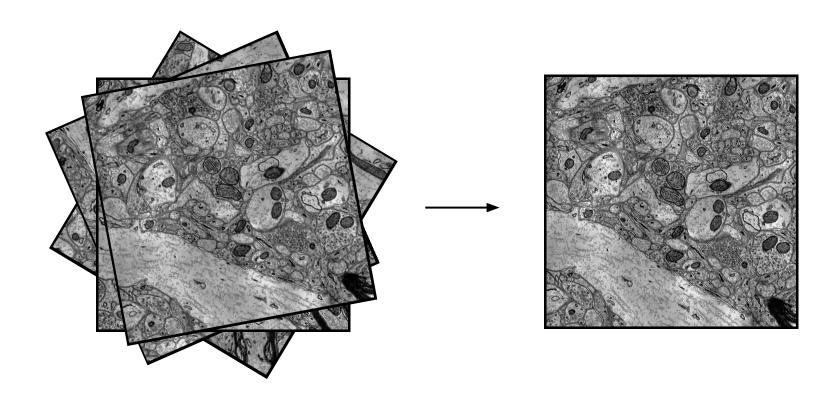
25 µm

6250 nm

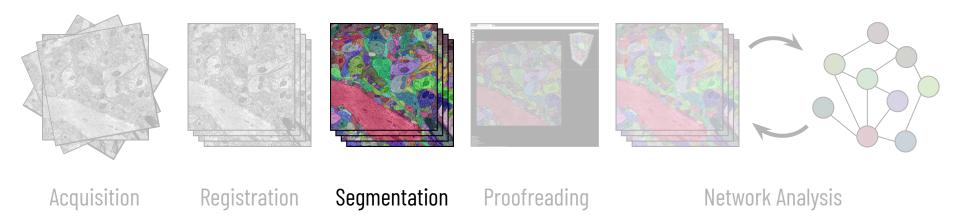
Connectomics Pipeline



Registration



Connectomics Pipeline

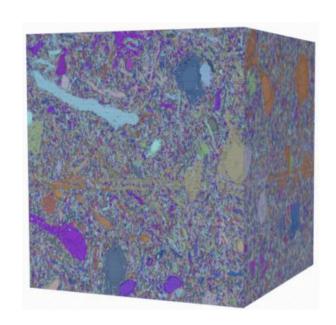


Nunez-Iglesias *et al.*, Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLoS ONE 2014 Cicek *et al.*, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016 Zeng *et al.*, DeepEM3D: Approaching Human-Level Performance on 3D Anisotropic EM Image Segmentation, Bioinformatics 2017 Pape *et al.*, Solving Large Multicut Problems for Connectomics via Domain Decomposition, ICCV 2017 Lee *et al.*, Superhuman Accuracy on the SNEMI3D Connectomics Challenge, arxiv 2017 Januszewski et al., High-Precision Automated Reconstruction of Neurons with Flood-Filling Networks, Nature Methods 2018

Label Volumes

Two voxels have the same label only if they belong to the same neuron

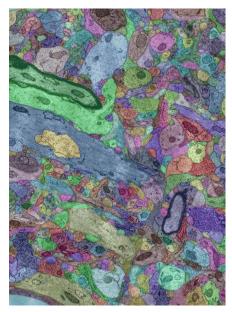


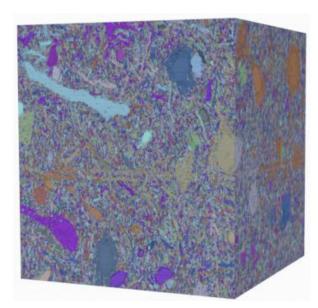


Label Volumes

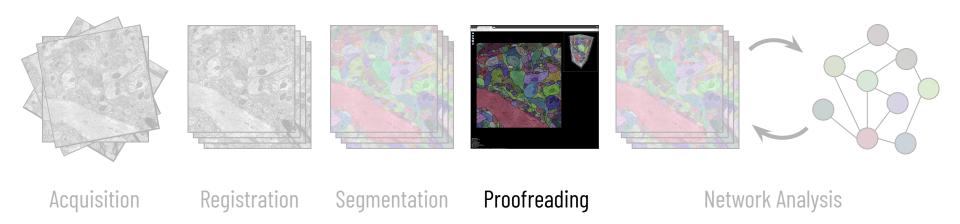
Two voxels have the same label only if they belong to the same neuron

Typically use 64 bits per voxel to label each segment uniquely





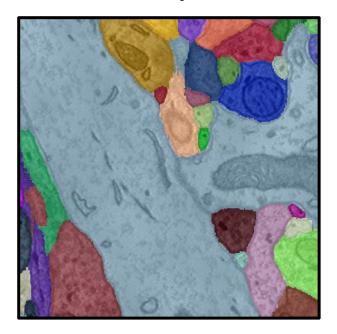
Connectomics Pipeline



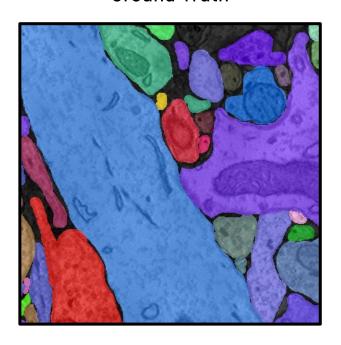
Haehn *et al.*, Design and Evaluation of Interactive Proofreading Tools for Connectomics, IEEE VIS 2014 Zung *et al.*, An Error Detection and Correction Framework for Connectomics, NIPS 2017 Haehn *et al.*, Guided Proofreading of Automatic Segmentations for Connectomics, CVPR 2018 Dmitriev *et al.*, Efficient Correction for EM Connectomics with Skeletal Representation, BMVC 2018 Matejek *et al.*, Biologically-Constrained Graphs for Global Connectomics Reconstruction, CVPR 2019

Merge Errors

Automatic Segmentation

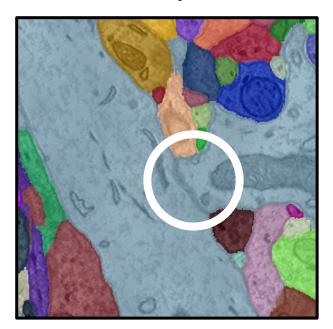


Ground Truth

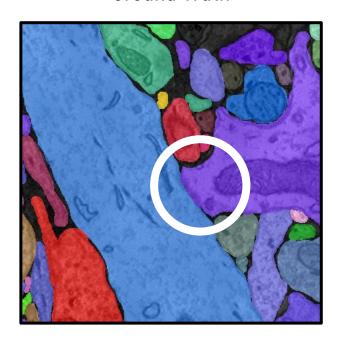


Merge Errors

Automatic Segmentation

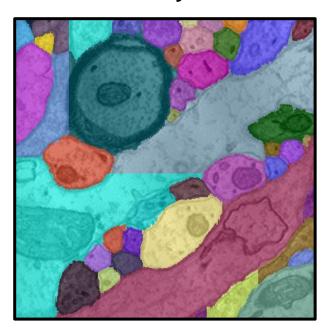


Ground Truth

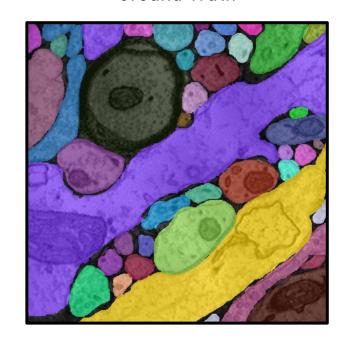


Split Errors

Automatic Segmentation

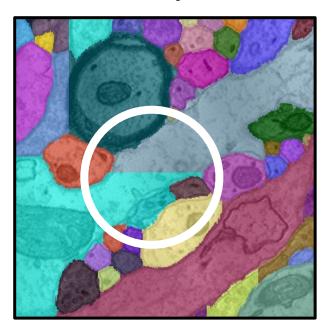


Ground Truth

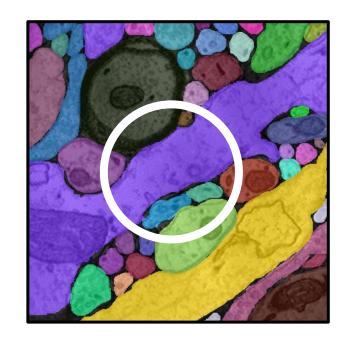


Split Errors

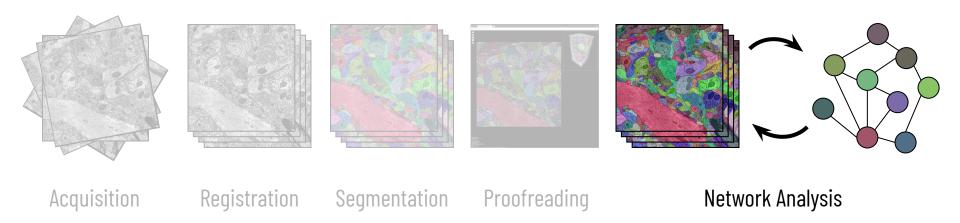
Automatic Segmentation



Ground Truth



Connectomics Pipeline



Sorger *et al.*, neuroMAP - Interactive Graph-Visualization of the Fruit Fly's Neural Circuit, BioVIS 2013
Al-Awami *et al.*, NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity, IEEE VIS 2014
Haehn *et al.*, Scalable Interactive Visualization for Connectomics, MDPI Informatics 2017
Cook *et al.*, Whole-Animal Connectomes of Both *Caenorhabditis elegans* Sexes, Nature 2019
Scheffer *et al.*, A Connectome and Analysis of the Adult *Drosophila* Central Brain, eLife 2020

Network Analysis

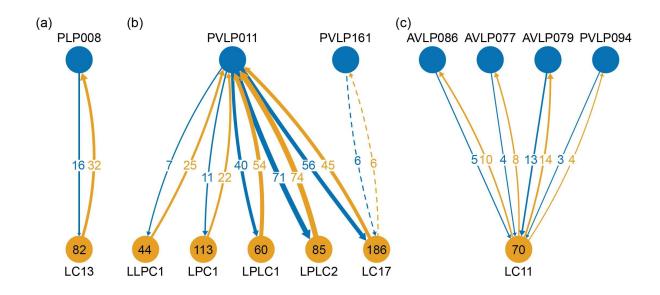
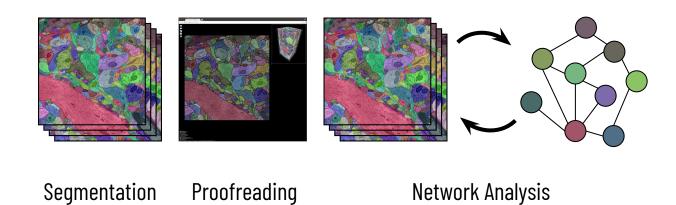
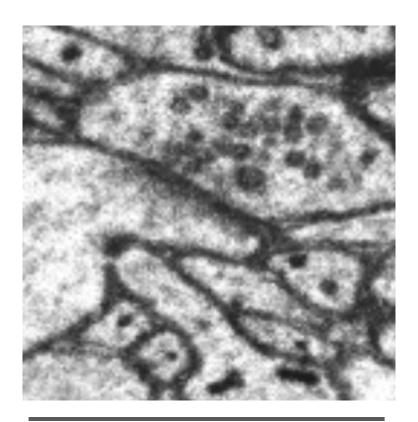


Image to Analysis Pipeline

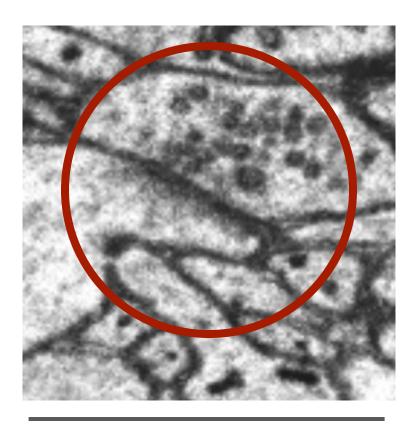


Network Analysis

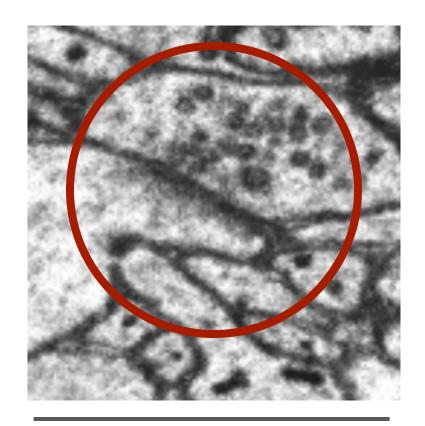
Reconstructing wiring diagrams requires extreme differences in scale

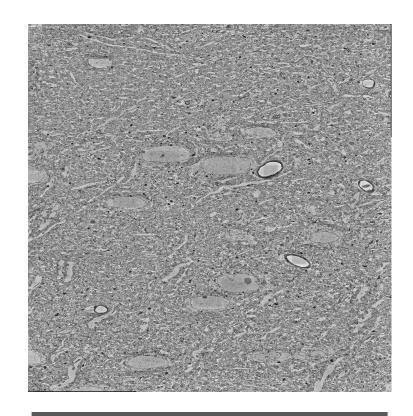


4-10 nanometer resolution



4-10 nanometer resolution

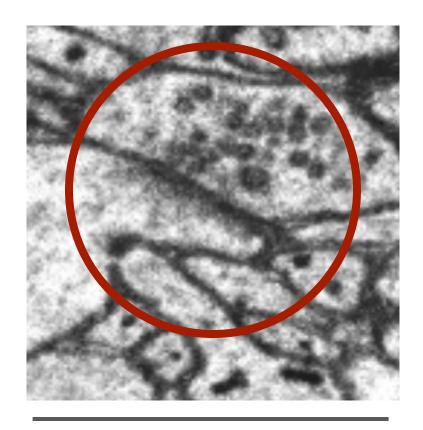




4-10 nanometer resolution

100 micrometers span

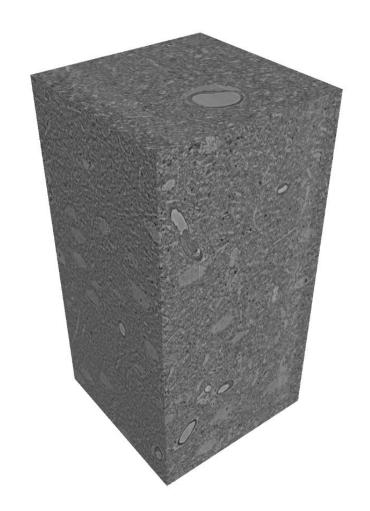
Four Orders of Magnitude Difference



4-10 nanometer resolution

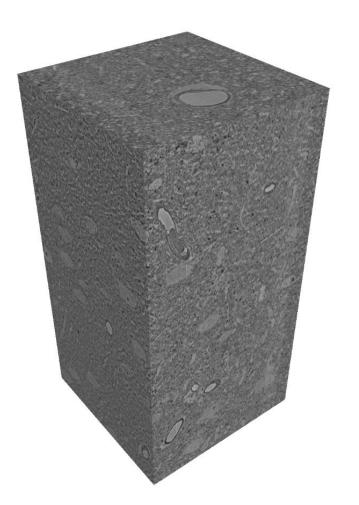
100 micrometers span

Scales compound with three dimensions



Scales compound with three dimensions

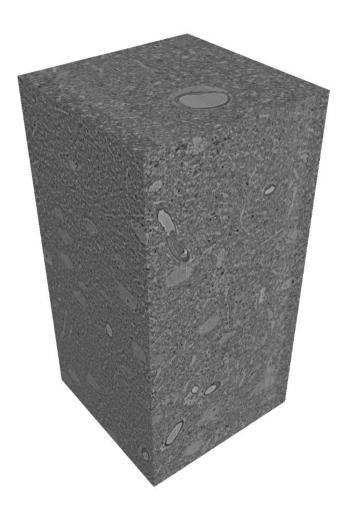
Small circuits with ~100-400 neurons require one trillion voxels



Scales compound with three dimensions

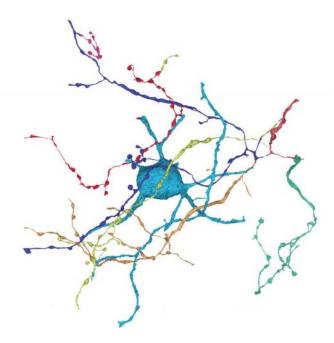
Small circuits with ~100-400 neurons require one trillion voxels

We require automatic solutions for reconstruction and analysis



End-to-End Deep Learning

Increasingly, end-to-end trained deep learning models reconstruct the neurons



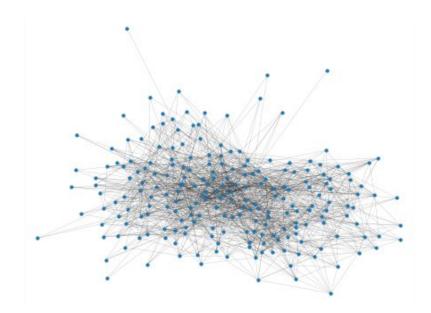
Errors with Automatic Methods

Despite incredible accuracies, these methods make mistakes at such large scales



Dense Graphs

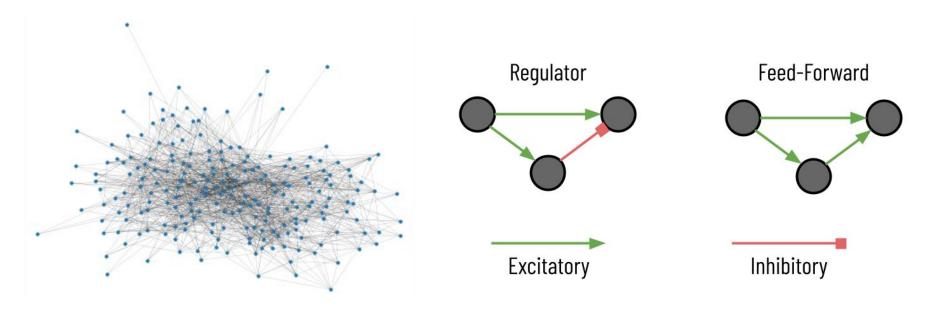
After reconstruction, the extracted wiring diagrams can be quite dense (20-100 connections per neuron)



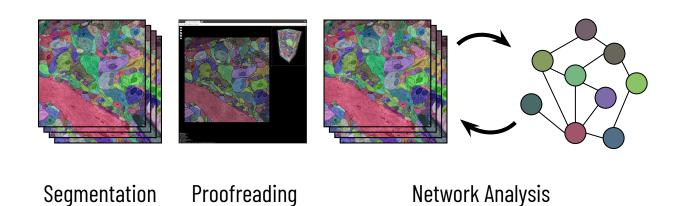
Dense Graphs with Biological Attributes

After reconstruction, the extracted wiring diagrams can be quite dense (20-100 connections per neuron)

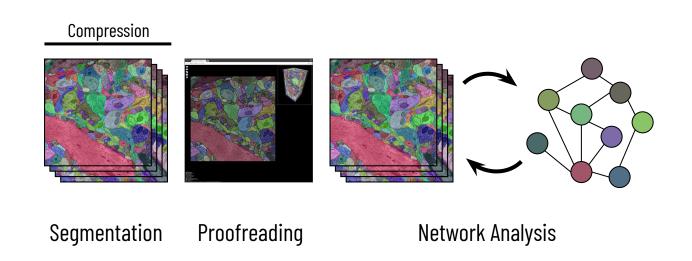
The connections themselves have biological significance such as excitatory/inhibitory synapses



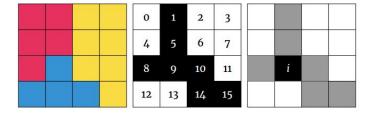
Biologically-Aware Algorithms Along the Connectomics Pipeline



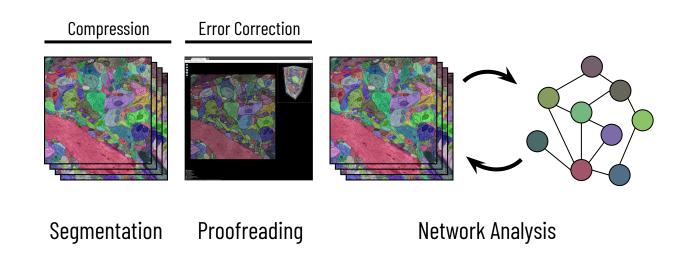
Biologically-Aware Algorithms Along the Connectomics Pipeline



Compresso: Efficient Compression of Segmentation Data for Connectomics



Biologically-Aware Algorithms Along the Connectomics Pipeline



Biologically-Constrained Graphs for Global Connectomics Reconstruction

Biologically-Constrained Graphs for Global Connectomics Reconstruction Brian Matejek+1, Daniel Haehn1, Haidong Zhu2, Donglai Wei1, Toufiq Parag3, and Hanspeter Pfister1 ¹Harvard University ²Tsinghua University ³Comcast Research Abstract of neurons is infeasible and automatic segmentation techniques are required. Most current state-of-the-art connectome reconstruction Current state-of-the-art automatic 3D reconstruction apninelines have two major stens: initial nixel-based seemenproaches typically use pixel-based convolutional neural nettation with affinity prediction and watershed transform, and works (CNNs) and watershed transforms to generate an initial over-segmentation [24, 37, 42], followed by region These methods rely only on local context and are typically merging steps [11, 21, 25, 30, 35]. Flood-filling networks agnostic to the underlying biology. Since a few merge ercombine these two steps into one by gradually expanding rors can lead to several incorrectly merged neuronal prosegments from a seed voxel [18]. However, all of these cesses, these algorithms are currently tuned towards overabove strategies make decisions using only the local constation producing an overburden of costly proofreadtext and do not consider the global ramifications to individ ing. We propose a third step for connectomics reconstrucual merges. Therefore, a small number of compounding tion ninelines to refine an over-seamentation using both lomerge errors can create an under-segmentation with sevcal and global context with an emphasis on adhering to the eral neuronal processes labeled as one neuron. Since corunderlying biology. We first extract a graph from an inrectine such merce errors is computationally challenging station where nodes correspond to segment lacurrent methods typically favor over-segmentation where a bels and edges indicate potential split errors in the overneuronal process is seemented into multiple labels. Unfor segmentation. To increase throughout and allow for largetunately proofreading these solit errors, while easier, still scale reconstruction, we employ biologically inspired peoremains onerous [33]. metric constraints based on neuron morphology to reduce We propose a third step for connectomics reconstruction the number of nodes and edges. Next, two neural networks workflows to refine these over-segmentations and close the learn these neuronal shapes to aid the graph construction gap between automatic and manual segmentation. We renrocess further. Lastly, we reformulate the region mereformulate the region merging problem as a graph partitioning nmhlem as a graph partitioning one to leverage global ing one to leverage global context during the agglomeration context. We demonstrate the performance of our approach on four real-world connectomics datasets with an average

1. Introduction

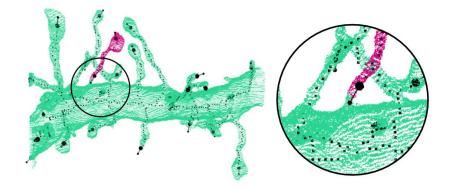
By studying connectomes—wiring diagrams extracted from the brain containing every neuron and the synapses between them-neuroniscientists hope to understand better certain neurological diseases, generate more faithful models of the brain, and advance artificial intelligence [12, 15]. To this end, neuroscientists produce high-resolution images of brain tissaes with electron microscopes where every synapse, mitochendrion, and cell boundary is visible [19]. Since these datasets now exceed pathylas in size, manual tracing

*Corresponding author hypotrick@seas havanleds

variation of information improvement of 21.3%.

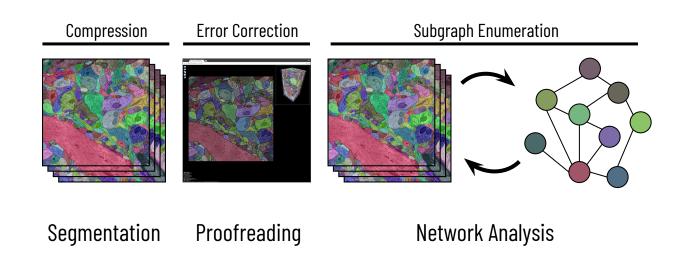
we propose a third step for contected the reconstruction we propose a third step for contected the reconstruction. We re-formulate the region merging problems as a graph partition goes to leverage global context during the agalomeration process. Thus for the computational burden associated with good to lever during the agaphemeration process. Thus for the computational burden associated with the region of the region of

When constructing our graph, we employ geometric constraints guided by the underlying biological morphology to reduce the number of nodes and edges. Due to their biological nature, over-segmented regions should be con-

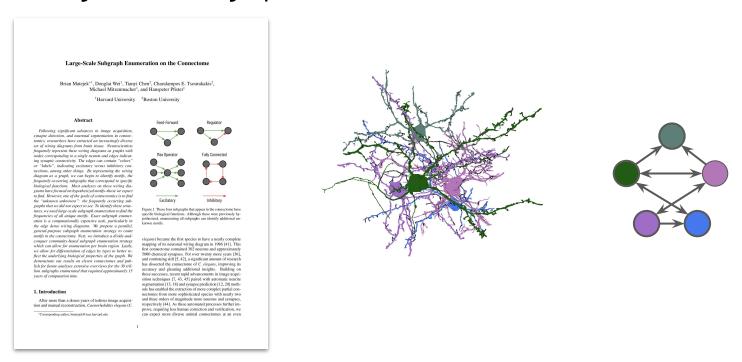


Brian Matejek, Daniel Haehn, Haidong Zhu, Daniel Haehn, Toufiq Parag, and Hanspeter Pfister CVPR 2019

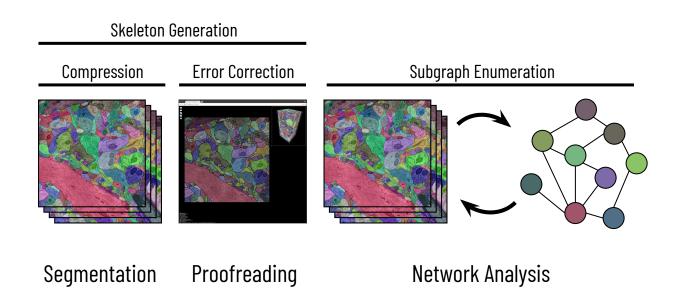
Biologically-Aware Algorithms Along the Connectomics Pipeline



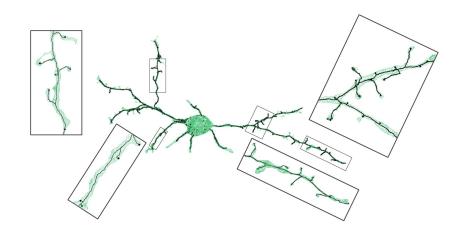
Large-Scale Subgraph Enumeration on the Connectome



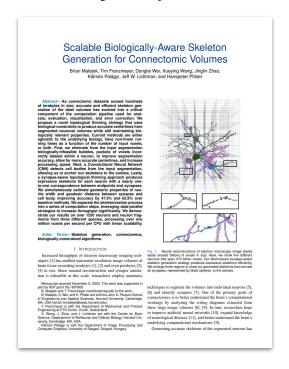
Biologically-Aware Algorithms Along the Connectomics Pipeline

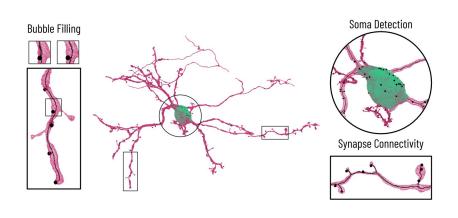


Synapse-Aware Skeleton Generation for Neural Circuits



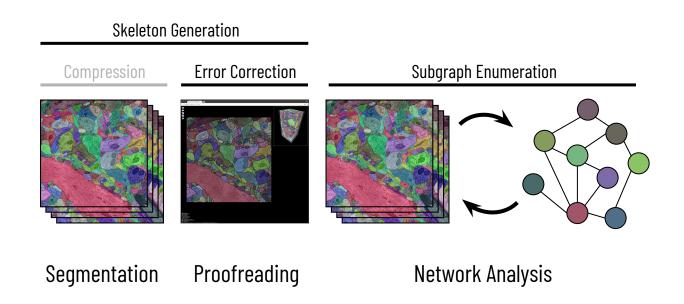
Scalable Biologically-Aware Skeleton Generation for Connectomic Volumes



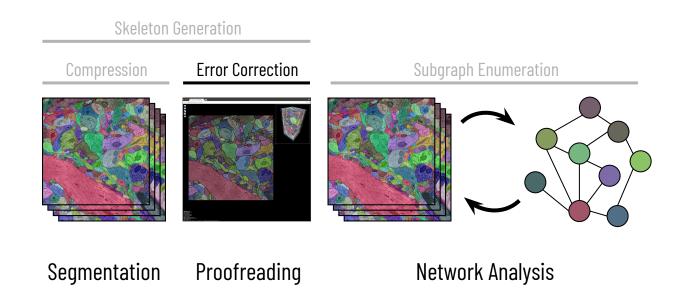


Brian Matejek[†], Tim Franzmeyer[†], Donglai Wei, Xueying Wang, Jinglin Zhao, Kálmán Palágyi, Jeff W. Lichtman, and Hanspeter Pfister Under Review

Biologically-Aware Algorithms Along the Connectomics Pipeline



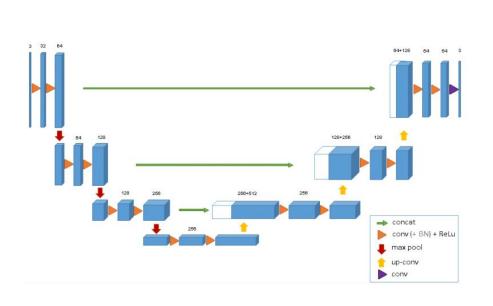
Biologically-Aware Algorithms Along the Connectomics Pipeline

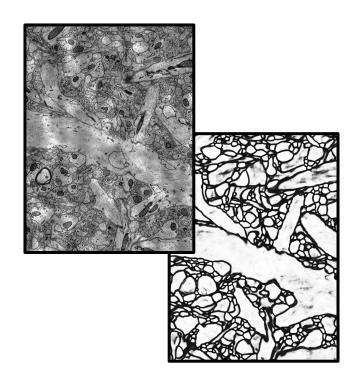


Biologically-Constrained Graphs for Global Connectomics Reconstruction

Brian Matejek, Daniel Haehn, Haidong Zhu, Donglai Wei, Toufiq Parag, and Hanspeter Pfister

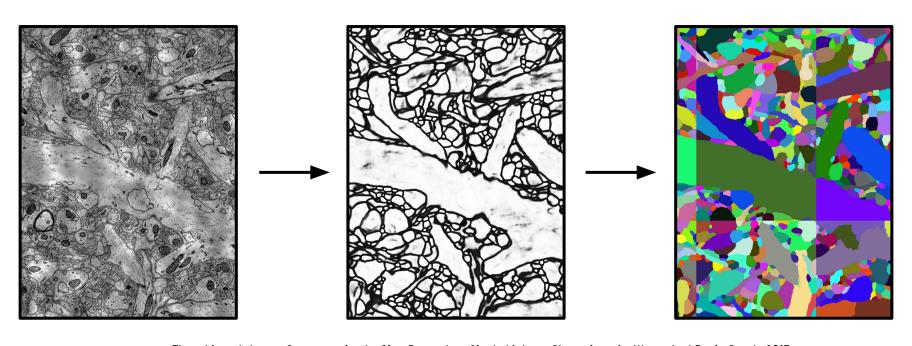
Affinity Generation





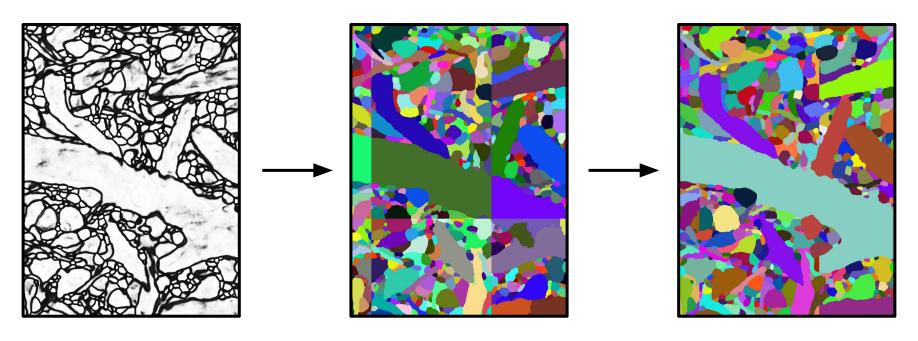
Ronneberger *et al.*, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015 Cicek *et al.*, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016

3D Watershed on Affinities



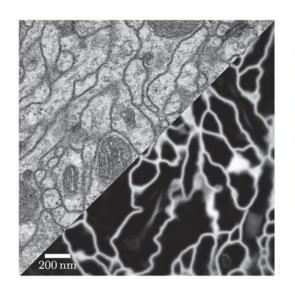
Zlateski *et al.*, Image Segmentation by Size-Dependent Single Linkage Clustering of a Watershed Basin Graph, 2015 Funke *et al.*, A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs, 2017 Zeng *et al.*, DeepEM3D: Approaching Human-Level Performance on 3D Anisotropic EM Image Segmentation, Bioinformatics 2017

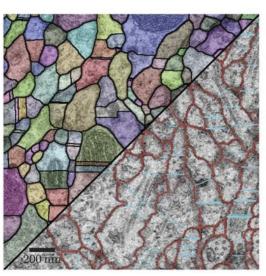
Agglomeration

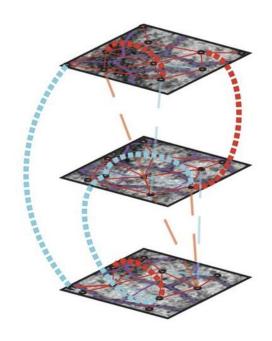


Nunez-Iglesias *et al.*, Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images, PLoS ONE, 2013
Parag *et al.*, A Context-Aware Delayed Agglomeration Framework for Electron Microscopy Segmentation, PLoS ONE 2015
Funke *et al.*, A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs, 2017

Lifted Multicuts



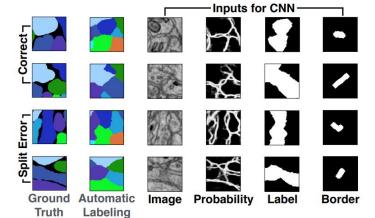


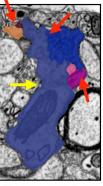


Errors

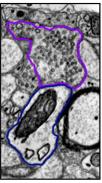
Automatic Segmentation Ground Truth

Guided Proofreading

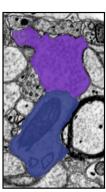




Merge- and Split **Errors**

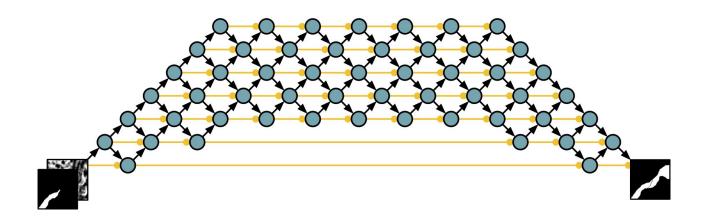


Correct **Borders**

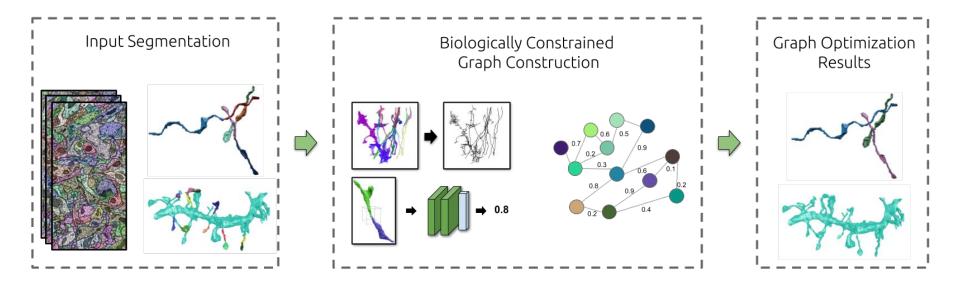


Fixed Segmentation

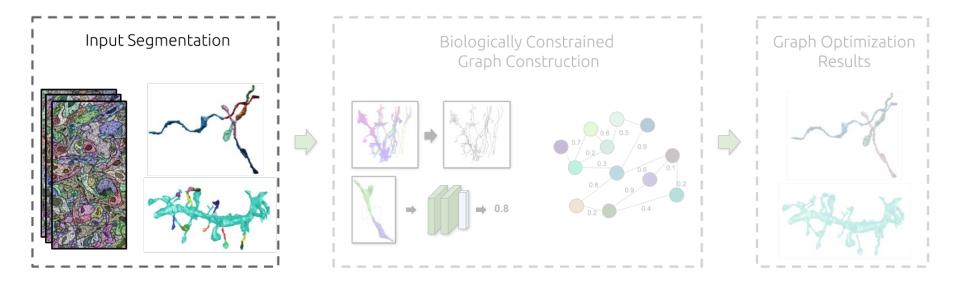
Automatic Proofreading



Proposed Automatic Error Correction

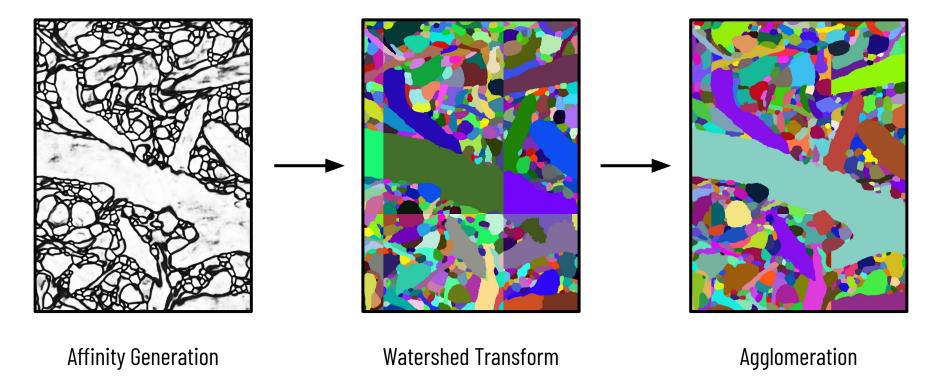


Input



Traditional Two-Stage Frameworks

Existing segmentation strategies typically produce over-segmentations



Traditional Two-Stage Frameworks

Existing segmentation strategies typically produce over-segmentations

We use the result from an existing strategy as our input

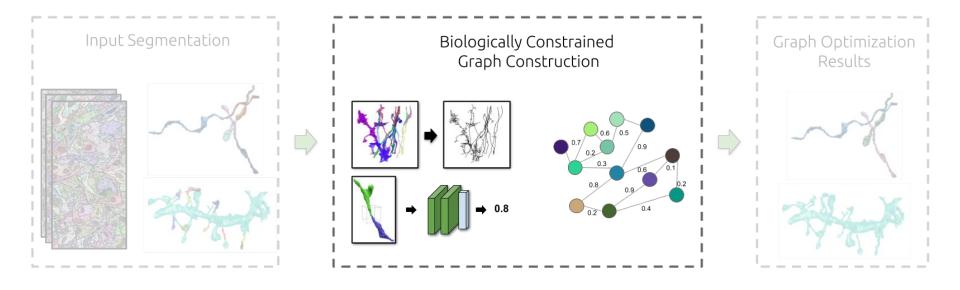
Traditional Two-Stage Frameworks

Existing segmentation strategies typically produce over-segmentations

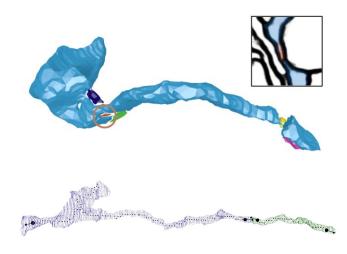
We use the result from an existing strategy as our input

Allows us to leverage larger local context when forming our graph

Goal: Construct a graph with as few nodes and edges as possible

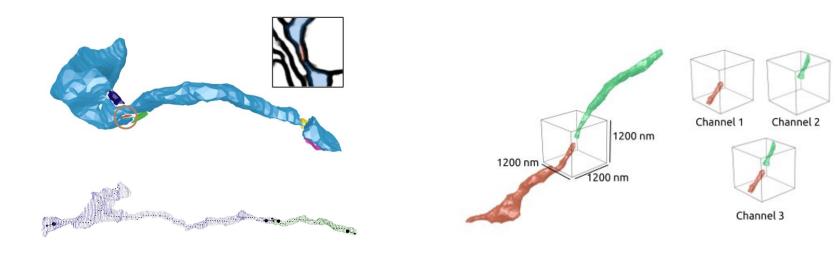


Graph Construction with Biological Constraints



Hand-Designed Geometric Constraints

Graph Construction with Biological Constraints



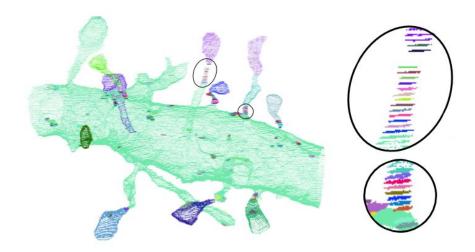
Hand-Designed Geometric Constraints Machine-Learned Morphologies

Node Generation

Existing segmentation strategies produce a large number of small segments

Node Generation

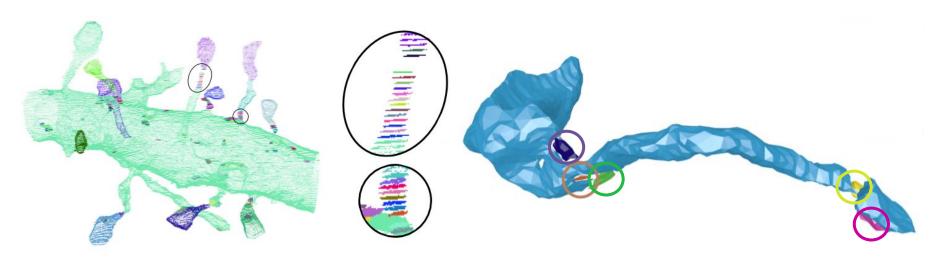
Existing segmentation strategies produce a large number of small segments



Singleton Slices

Node Generation

Existing segmentation strategies produce a large number of small segments

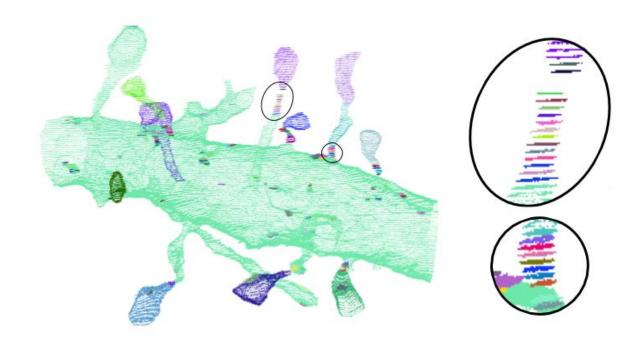


5 Small Segments

Singleton Slices

Singleton Removal

Merge adjacent singleton slices that have an Intersection-over-Union above 0.30



Merging Other Small Segments

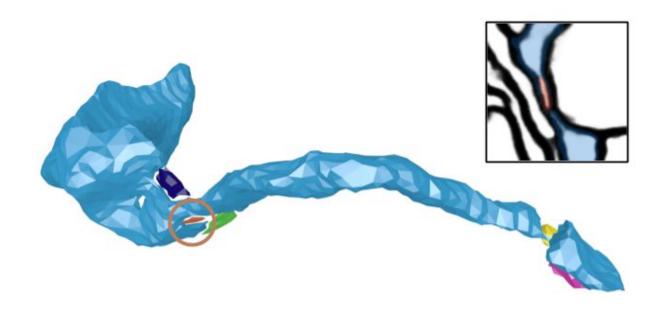
Up to 80% of remaining segments are very small with little shape information



Merging Other Small Segments

Up to 80% of remaining segments are very small with little shape information

These small segments often occur at narrow locations with noisy affinities



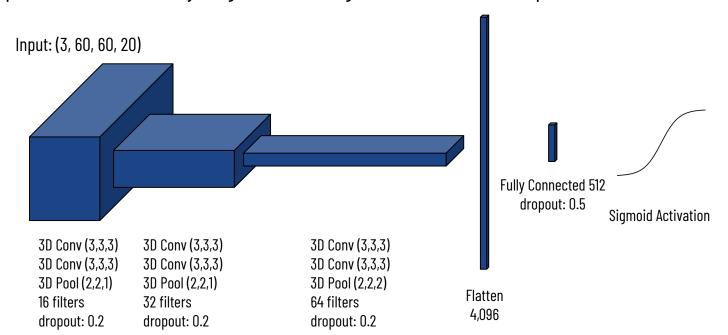
Small Segment Merging

Each small segment is merged with a nearby large segment

Small Segment Merging

Each small segment is merged with a nearby large segment

A 3D CNN predicts the most likely neighbor to belong to the same neuronal process



Each segment has too many adjacent neighbors to use the adjacency matrix

Each segment has too many adjacent neighbors to use the adjacency matrix

Typical Segment

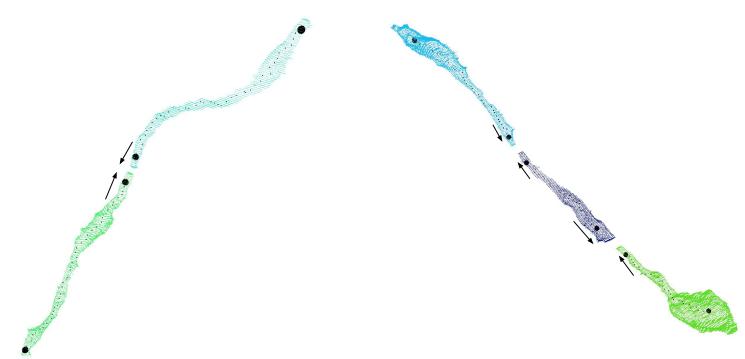
Each segment has too many adjacent neighbors to use the adjacency matrix

Typical Segment

103 Adjacent Neighbors

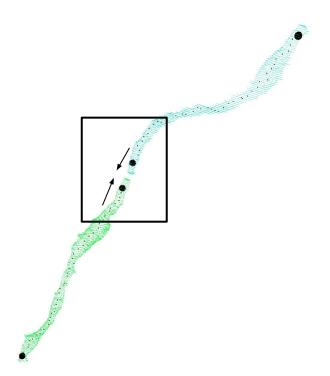
Handcrafted Geometric Constraints

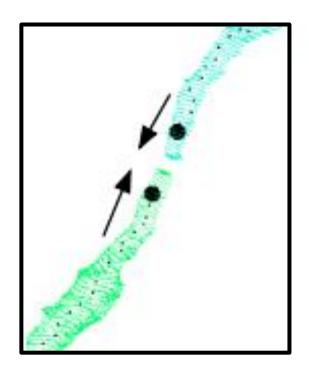
Use directional information to identify potential split error locations



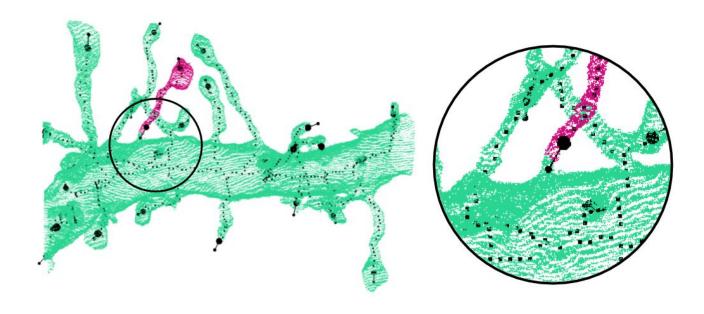
Skeleton Generation

Approximate volume shapes with 1D skeletons and identify potential split errors based on skeletal geometry around the endpoints



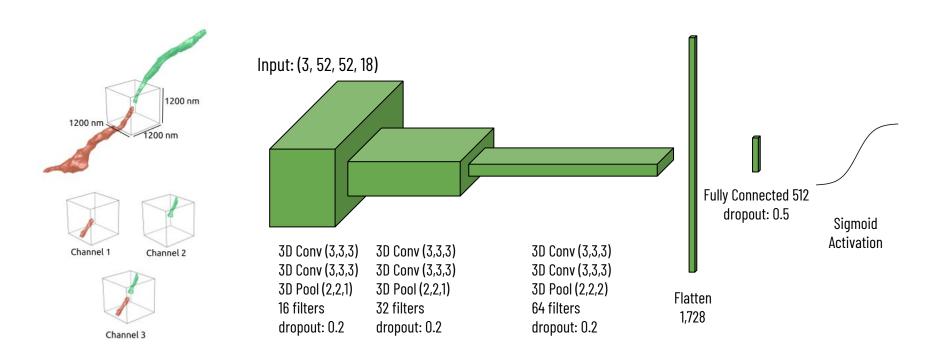


Two nodes receive an edge in the graph if one of the corresponding skeletons has an endpoint vector towards the other segment



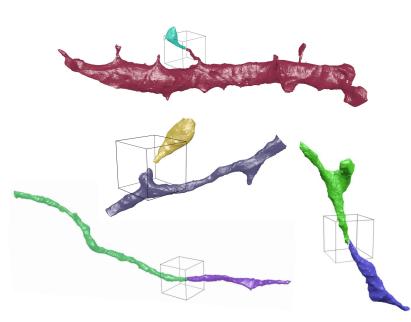
Generating Edge Weights with Machine-learned Morphologies

We train a convolutional neural network to predict if two segments belong to the same neuronal process

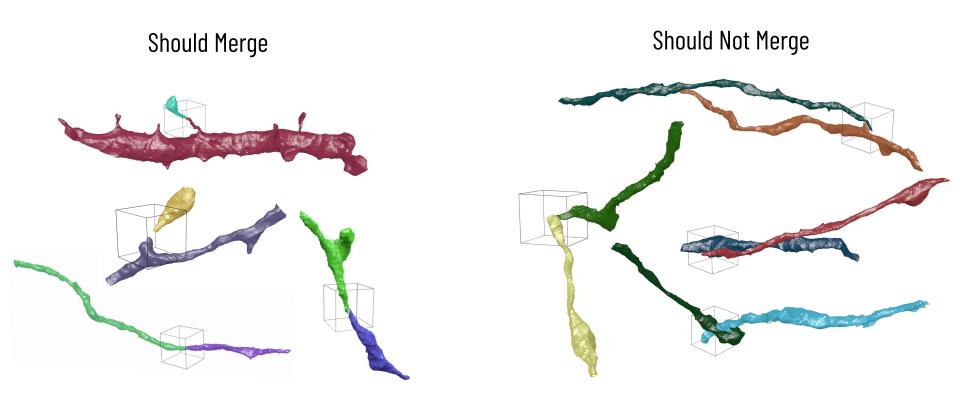


Input Examples

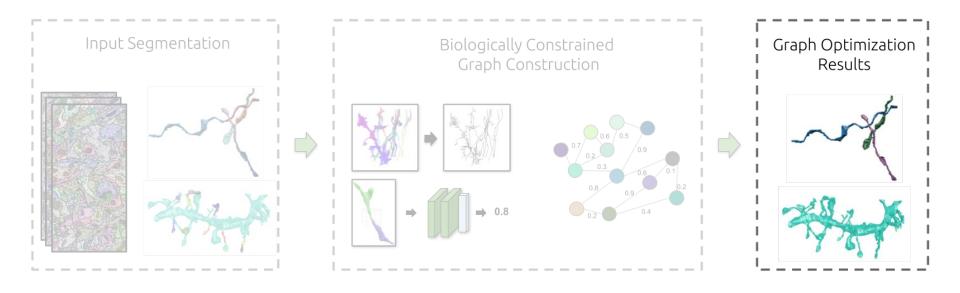
Should Merge



Input Examples

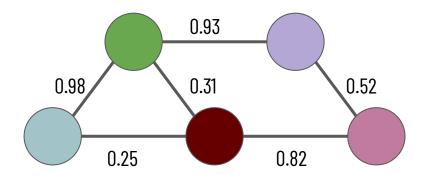


Goal: Partition graph into neuronal processes



Multicut

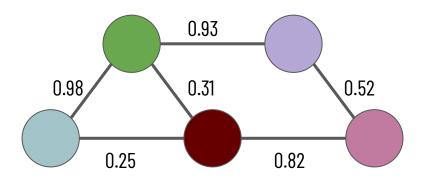
Reformulate the segmentation problem as a multicut graph partitioning one



Multicut

Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

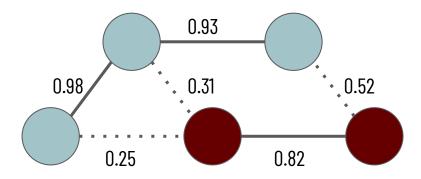


Multicut

Reformulate the segmentation problem as a multicut graph partitioning one

The final number of segments is not predetermined

Guarantees a globally consistent solution

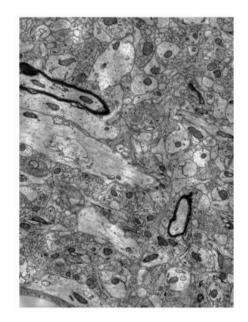


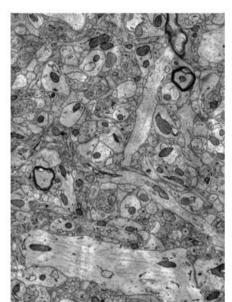
Datasets

Kasthuri

Princeton Neuroscience Institute

SNEMI3D





2 Volumes

6 x 6 x 30 nm³ / vx

1335 x 1809 x 338 vx

 $8.01 \times 10.85 \times 10.14 \ \mu m^3$

Datasets

Kasthuri

Princeton Neuroscience Institute

SNEMI3D

9 Volumes

2048 x 2048 x 256 vx

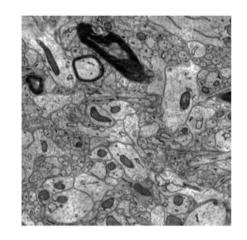
3.6 x 3.6 x 40 nm³ / vx

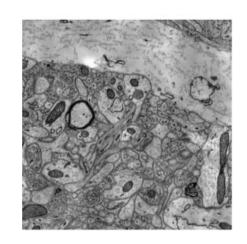
7.37 x 7.37 x 10.24 μm^3

Datasets

Kasthuri

Princeton Neuroscience Institute





SNEMI3D

2 Volumes

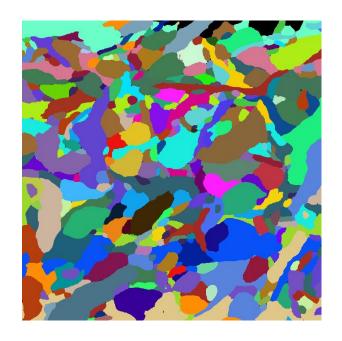
3 x 3 x 30 nm³ / vx

1024 x 1024 x 100 vx

 $3.07 \times 3.07 \times 3 \ \mu m^3$

Input Segmentations

For the two PNI Test datasets, we use zwatershed and mean agglomeration



Input Segmentations

For the Kasthuri and SNEMI3D datasets, we use the waterz agglomeration strategy

Measure of entropy between segmentation and ground truth

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels

VI Merge: Increases if two voxels from different neurons have the same label

Measure of entropy between segmentation and ground truth

VI Split: Increases if two voxels from the same neuron have different labels

VI Merge: Increases if two voxels from different neurons have the same label

Total Variation of Information = VI Split + VI Merge

Variation of Information

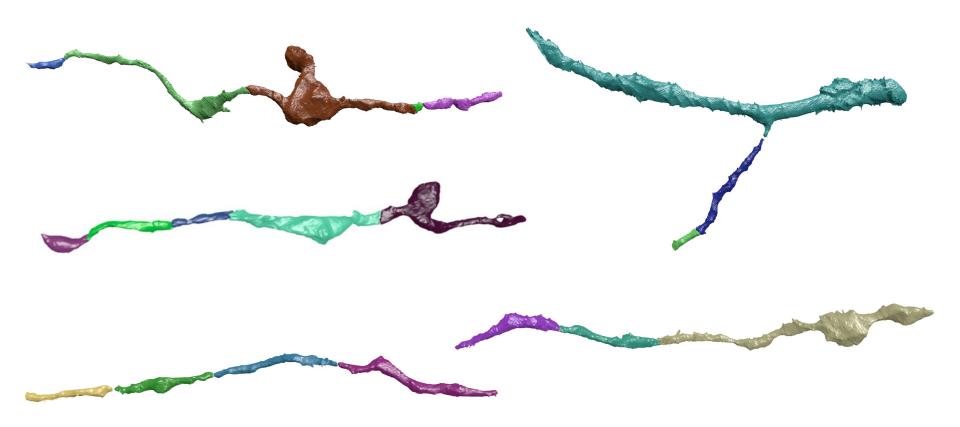
Dataset	Baseline (↓)	Proposed (\downarrow)	Decrease (↑)
PNI Test One	0.491	0.388	-20.9%
PNI Test Two	0.416	0.297	-28.7%
Kasthuri Test	0.965	0.815	-15.6%
SNEMI3D	0.807	0.647	-19.8%

Variation of Information

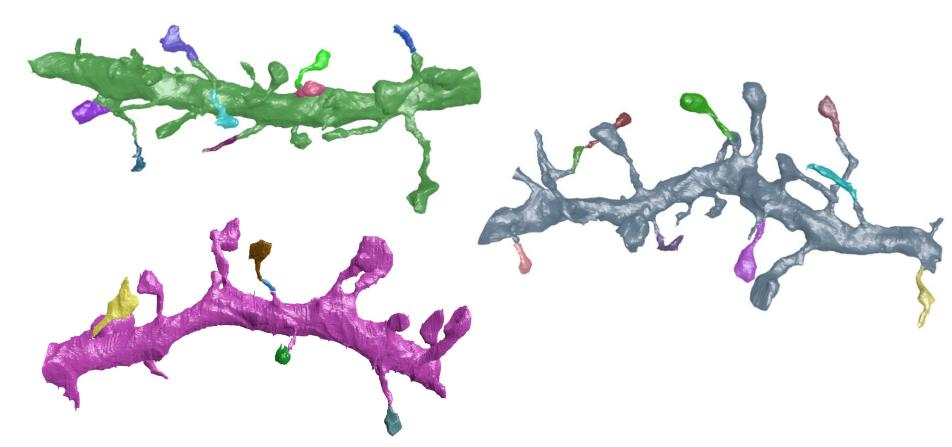
Dataset	Baseline (↓)	Proposed (\downarrow)	Decrease (↑)
PNI Test One	0.491	0.388	-20.9%
PNI Test Two	0.416	0.297	-28.7%
Kasthuri Test	0.965	0.815	-15.6%
SNEMI3D	0.807	0.647	-19.8%

Average decrease of Variation of Information by 21.3% over the four datasets

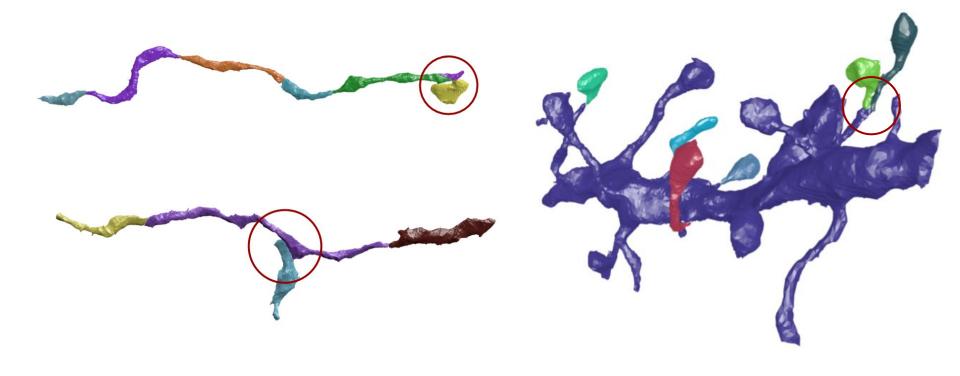
Qualitative Results



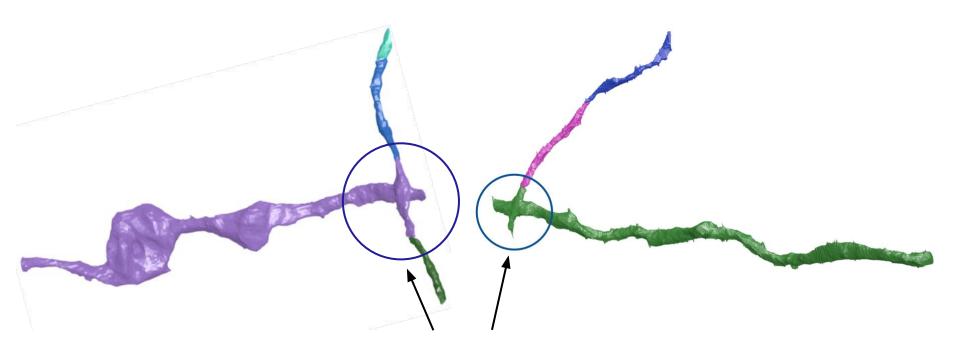
Qualitative Results



Failure Cases



Failure Cases



Errors in Input Segmentation

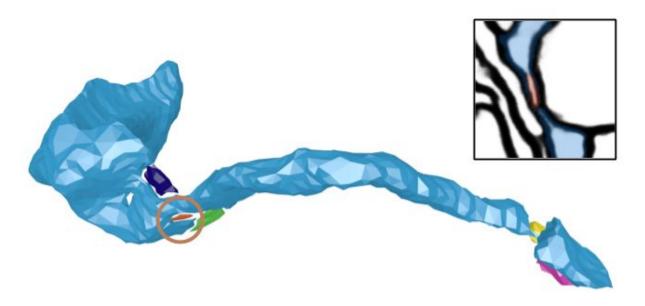
Ablation Studies: Node Generation

Goal: Merge all small segments with a nearby larger segment from the same neuronal process

Ablation Studies: Node Generation

Goal: Merge all small segments with a nearby larger segment from the same neuronal process

Baseline: How many small segments belong to the same neuron as the high affinity large neighbor?



Ablation Studies: Node Generation

Goal: Merge all small segments with a nearby larger segment from the same neuronal process

Baseline: How many small segments belong to the same neuron as the high affinity large neighbor?

Dataset	Baseline (↑)	Proposed (↑)
PNI Test One	305/521 (36.9%)	686/129 (80.2%)
PNI Test Two	185/281 (39.7%)	444/75 (85.5%)
Kasthuri Test	4,514/8,604 (52.5%)	6,623/2,020 (76.6%)

The number of correctly merged small segments versus the number of incorrectly merged segments

Ablation Studies: Edge Generation

Goal: Identify all split errors while minimizing the number of total edges in the graph

Ablation Studies: Edge Generation

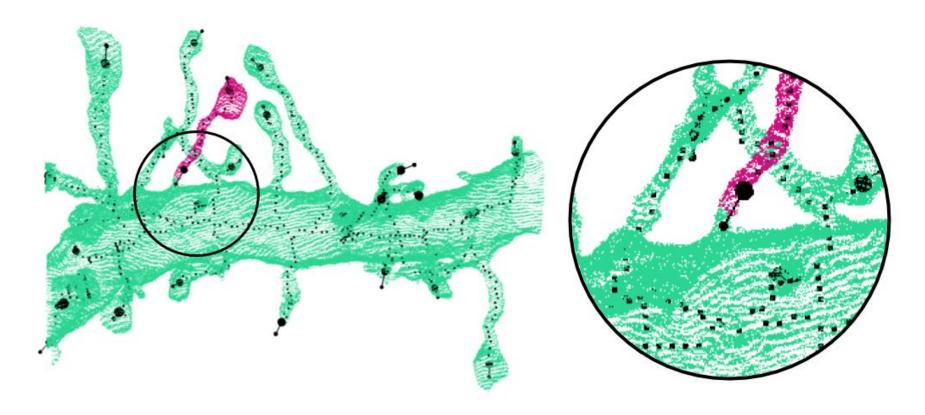
Goal: Identify all split errors while minimizing the number of total edges in the graph

Baseline: How many total edges are there in the adjacency graph?

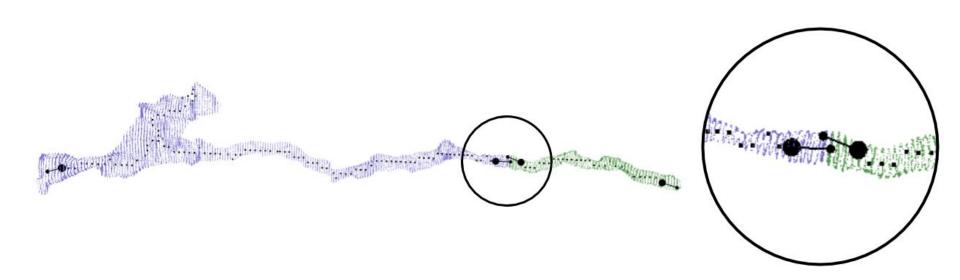
Dataset	Baseline	Proposed	Edge Recall (↑/↓)
PNI Test One	528 / 25,619	417 / 10,074	79.0% / 39.3%
PNI Test Two	460 / 30,388	370 / 11,869	80.4% / 39.1%
Kasthuri Test	1,193 / 43,951	936 / 18,168	78.5% / 41.3%

The number of edges in the graph that correspond to split errors, the total number of edges, and the recall

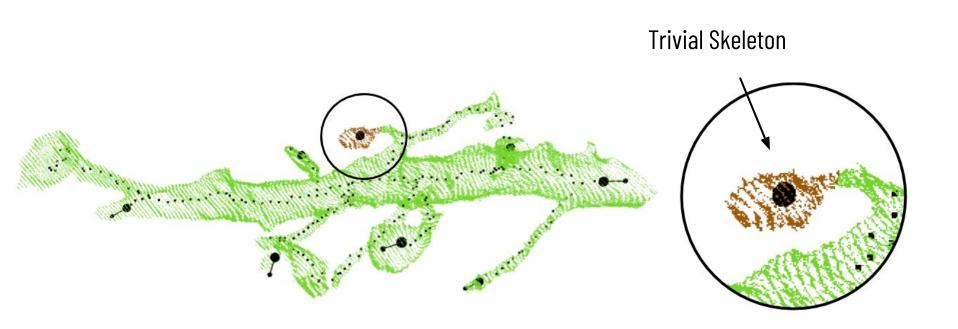
Ablation Studies: Edge Generation



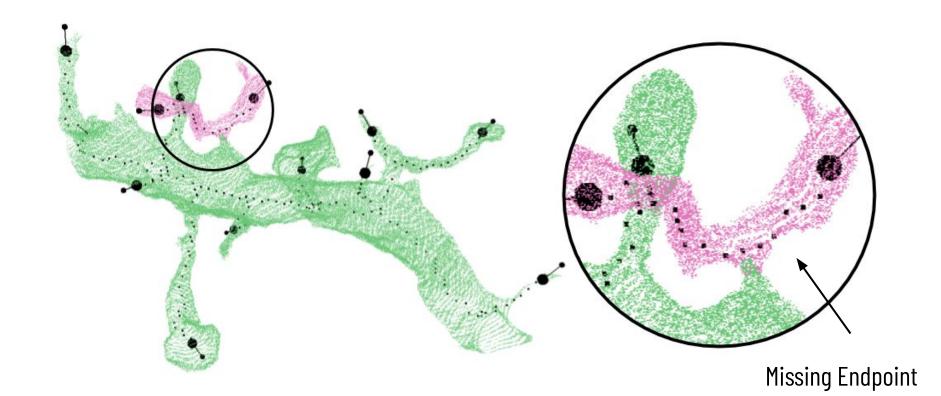
Ablation Studies: Edge Generation



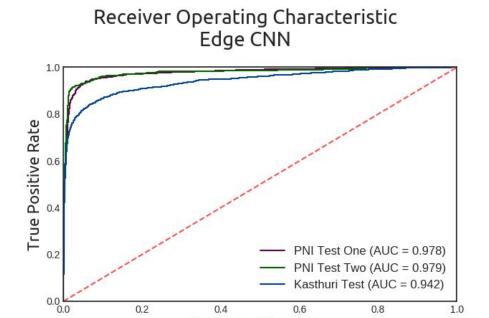
Edge Generation Failure Cases



Edge Generation Failure Cases



Ablation Studies: Edge Weight Assignment



False Positive Rate

Accuracies:

PNI Test One: 96.4%

PNI Test Two: 97.2%

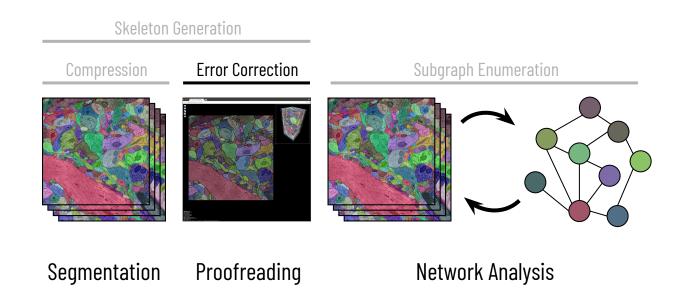
Kasthuri: 93.4%

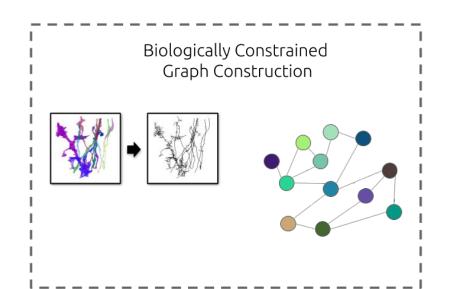
Running Times

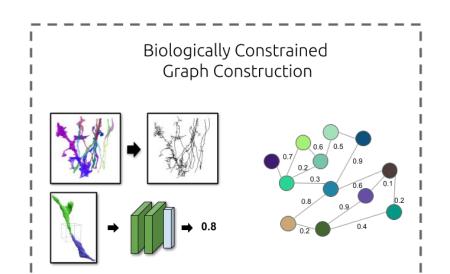
Time to process a gigavoxel dataset

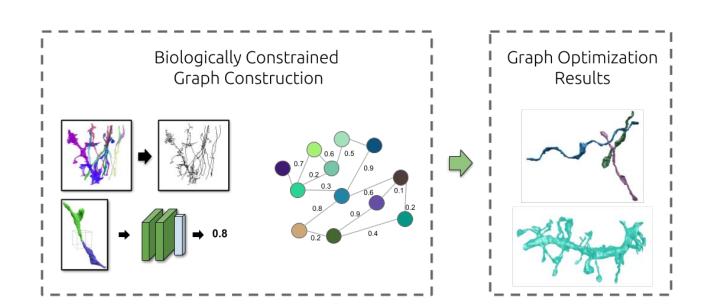
Step	Running Time
Node Generation	281 seconds
Edge Generation	351 seconds
Lifted Multicut	13 seconds
Total	10.75 minutes

Biologically-Aware Algorithms Along the Connectomics Pipeline

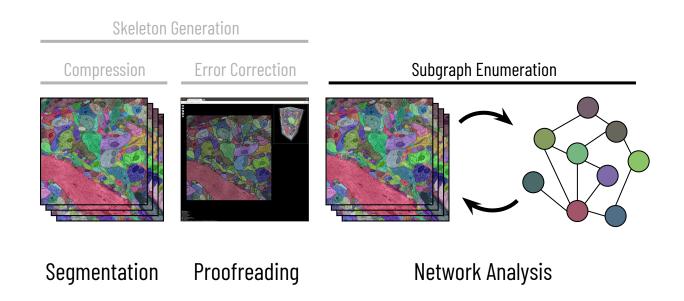








Biologically-Aware Algorithms Along the Connectomics Pipeline

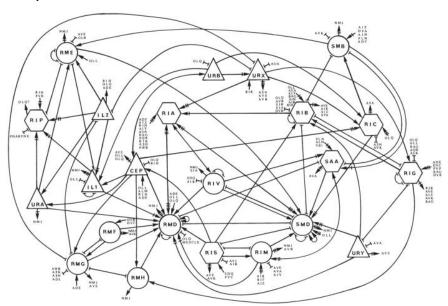


Large-Scale Subgraph Enumeration on the Connectome

Brian Matejek, Donglai Wei, Tianyi Chen, Charalampos E. Tsourakakis, Michael Mitzenmacher, and Hanspeter Pfister

Extracting the Entire Wiring Diagram

C. elegans, the first nearly complete connectome



Emmons S.W., The Beginning of Connectomics: A Commentary on White et al. (1986) 'The Structure of the Nervous System of the Nematode Caenorhabditis elegans.' Philosophical Transactions of the Royal Society of London 2015.

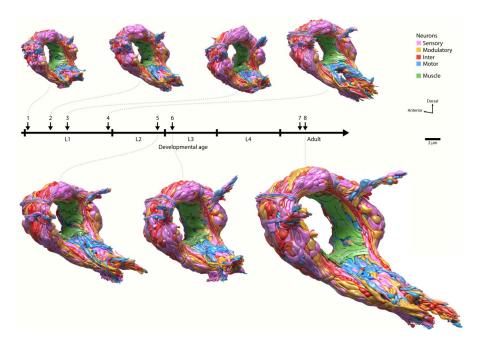
Copyright © The Royal Society

Rapid Expansions in Large-Scale Wiring Diagrams

Improvements in the automatic processes allow for larger and more diverse connectomes

Rapid Expansions in Large-Scale Wiring Diagrams

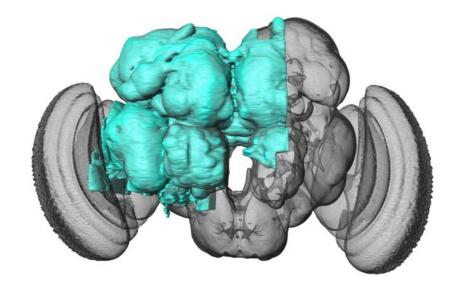
Improvements in the automatic processes allow for larger and more diverse connectomes



Witvliet et al., Connectomes Across Development Reveal Principles of Brain Maturation in C. elegans, biorxiv 2020.

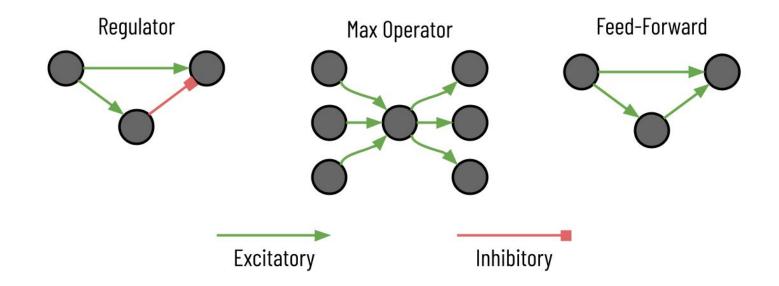
Rapid Expansions in Large-Scale Wiring Diagrams

Improvements in the automatic processes allow for larger and more diverse connectomes



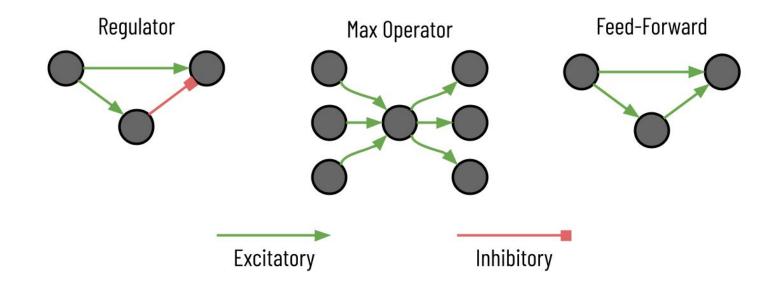
Motif Discovery

Some subgraphs, or motifs, in the wiring diagram correspond to specific computational functions



Motif-Centric Subgraph Enumeration

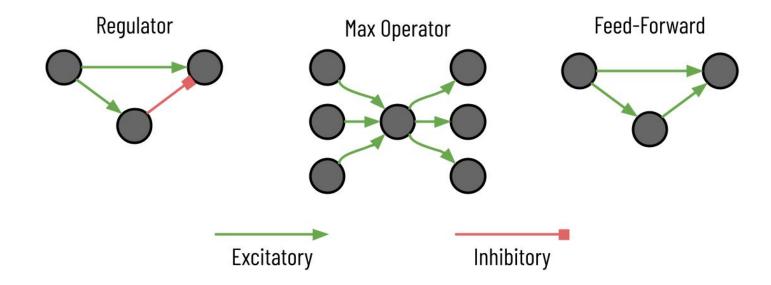
Most current motif analysis on these connectomes looks only for currently expected motifs



Motif-Centric Subgraph Enumeration

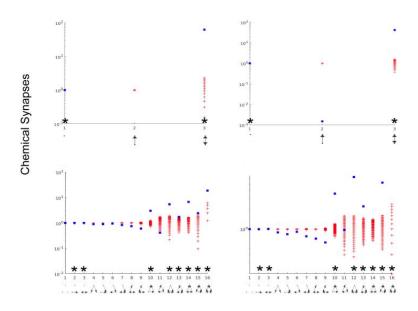
Most current motif analysis on these connectomes looks only for currently expected motifs

However, these strategies cannot identify "unknown unknowns"



Network-Centric Subgraph Enumeration

Analyses that consider all viable subgraphs of size k in a connectome typically restrict k to 2 or 3



Cook et al., Whole-animal Connectomes of Both Caenorhabditis elegans sexes, Nature 2019

The number of subgraphs to enumerate grows quickly as k increases

Subgraph Size (k)	No. Subgraphs
3	125,601
4	3,809,067
5	126,545,565
6	4,286,896,477
7	143,807,877,796

Results from one connectome with 598 neurons/muscles/end-organs and 7,725 edges

The number of subgraphs to enumerate grows quickly as *k* increases

Subgraph Size (k)	No. Subgraphs
3	125,601 _{30 x}
4	3,809,067
5	126,545,565
6	4,286,896,477
7	143,807,877,796 ^{34 x}

Results from one connectome with 585 neurons/muscles/end-organs and 7,415 edges

The number of subgraphs to enumerate grows quickly as *k* increases

The complexity to correctly classify a single subgraph increases exponentially with k

Subgraph Size (k)	Subgraphs per second
4	285,136
5	221,352
6	161,812
7	119,991
8	95,244

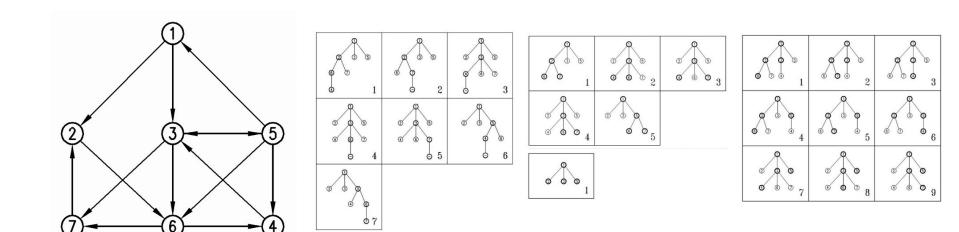
Averaged over eight connectomes with 225 neurons each (variable edges)

Subgraph Size (k)	No. Subgraphs	Computation Time
3	126,610,248	9.44 min
4	36,041,949,778	2.15 d
5	12,522,283,314,604	2.77 yr

Results from one connectome with 21,739 neurons and 841,720 edges

Kavosh Subgraph Enumeration

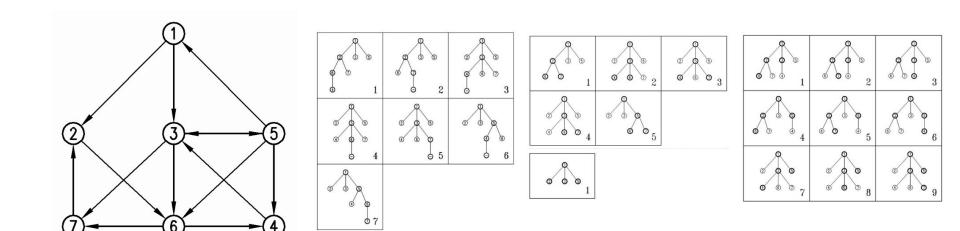
We extend on the Kavosh algorithm, an existing fast method for network-centric enumeration



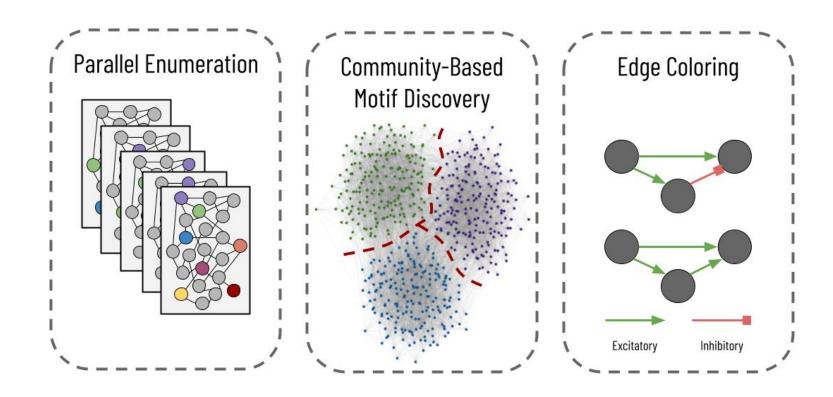
Kavosh Subgraph Enumeration

We extend on the Kavosh algorithm, an existing fast method for subgraph enumeration

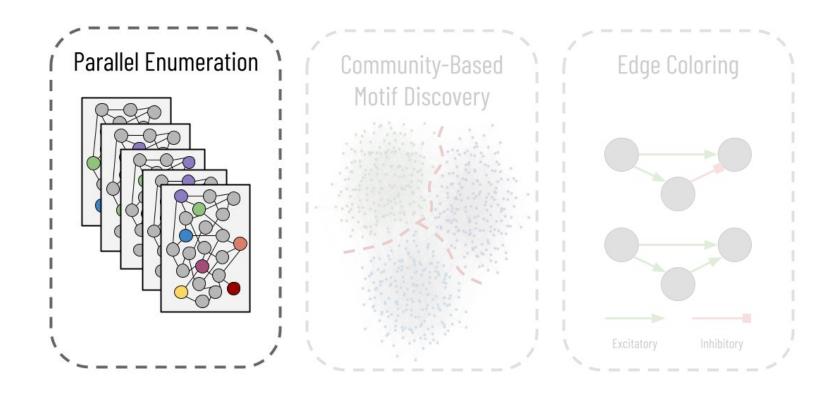
To avoid subgraph duplication, the algorithm considers all subgraphs rooted at a given vertex



Proposed Large-Scale Subgraph Enumeration

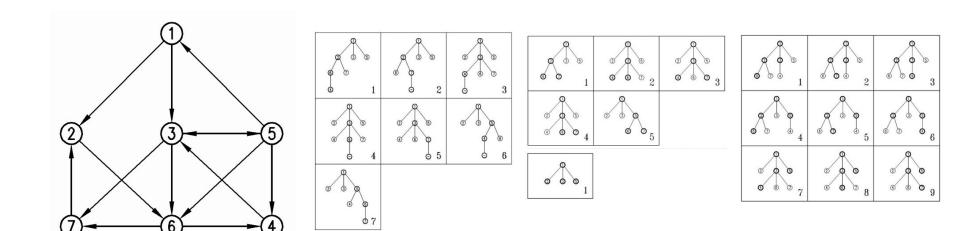


Goal: Distribute Enumeration over a Compute Cluster



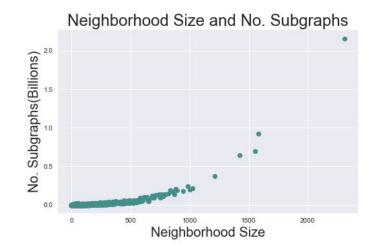
Parallelizing Kavosh

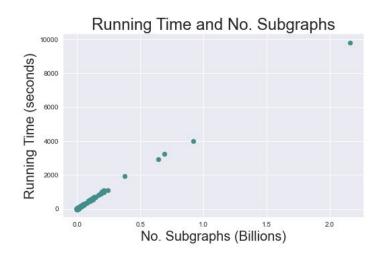
The algorithm itself is easy to parallelize—enumerate the subgraphs rooted at each vertex in parallel



Better Parallelization

There are significant disparities in the number of subgraphs rooted at a given vertex

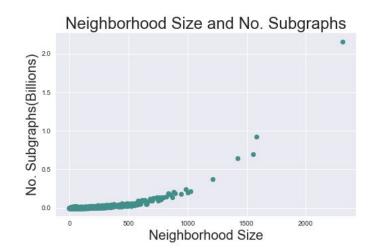


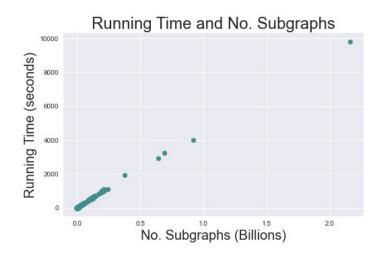


Better Parallelization

There are significant disparities in the number of subgraphs rooted at a given vertex

The many large cliques in connectomics can produce vertices with thousands of times more subgraphs





Readjusting the Enumeration Order

We relabel the vertices to minimize the influence of these cliques and reduce the idle CPU time

	Standard Order	Readjusted Order
Mean Time	8.21 sec	8.54 sec
Median Time	0.92 sec	5.80 sec
Maximum Time	9,820.40 sec	74.12 sec
Wall Time	175.20 min	15.78 min
Idle CPU Time	680.44 hr	14.18 hr

Results for k = 4 from one connectome with 21,739 neurons and 841,720 synaptic connections

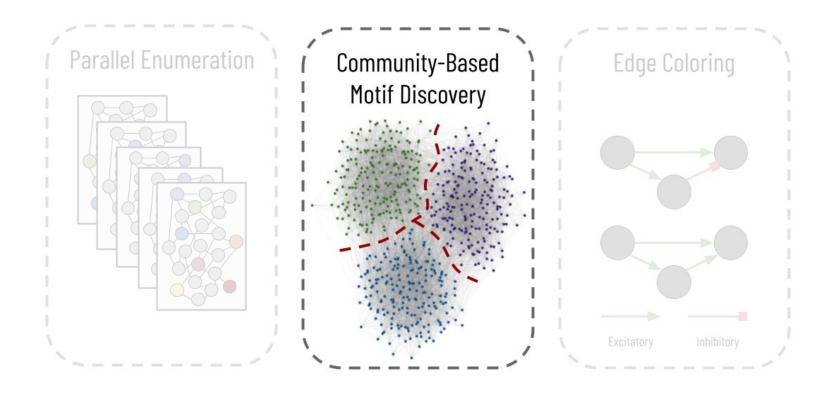
Readjusting the Enumeration Order

We relabel the vertices to minimize the influence of these cliques and reduce the idle CPU time

	Standard Order	Readjusted Order
Mean Time	8.21 sec	8.54 sec
Median Time	0.92 sec	5.80 sec
Maximum Time	9,820.40 sec	74.12 sec
Wall Time	175.20 min	15.78 min
Idle CPU Time	680.44 hr	14.18 hr

Results for k = 4 from one connectome with 21,739 neurons and 841,720 synaptic connections

Goal: Divide and Conquer Enumeration for Very Large Datasets

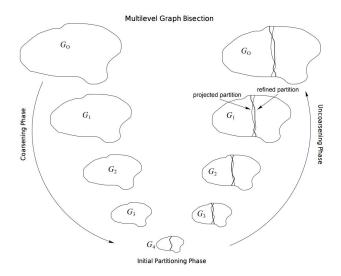


Clustering Before Enumeration

For very large connectomes, parallelization will not be enough as the number of subgraphs grows quickly

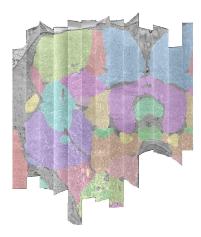
Clustering Before Enumeration

For very large connectomes, parallelization will not be enough as the number of subgraphs grows quickly We use the METIS algorithm to create similarly sized clusters and enumerate subgraphs within clusters

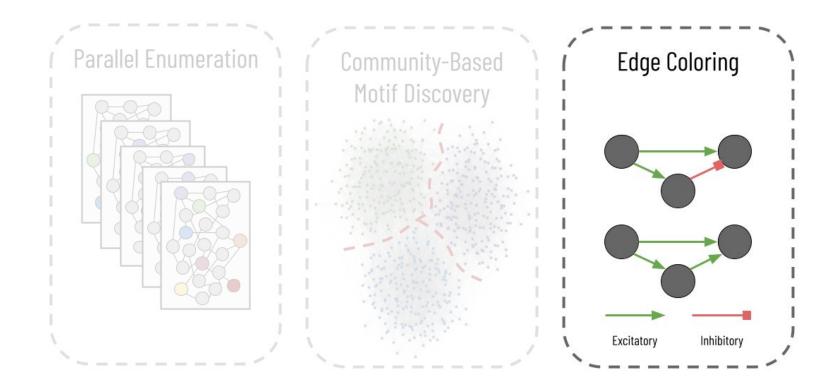


Clustering Before Enumeration

For very large connectomes, parallelization will not be enough as the number of subgraphs grows quickly We use the METIS algorithm to create similarly sized clusters and enumerate subgraphs within clusters. These clusters could similarly be determined by domain-knowledge of the brain regions

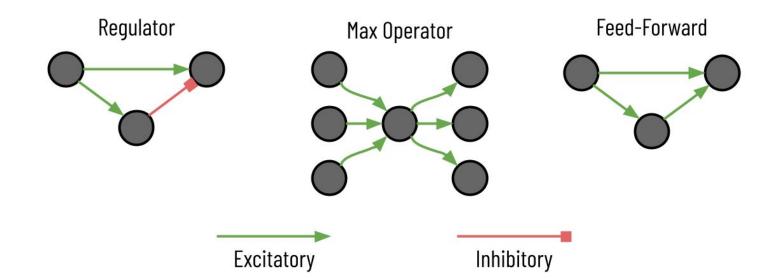


Goal: Augment Graphs with Biologically Relevant Features



Creating Graphs that Better Resemble the Biology

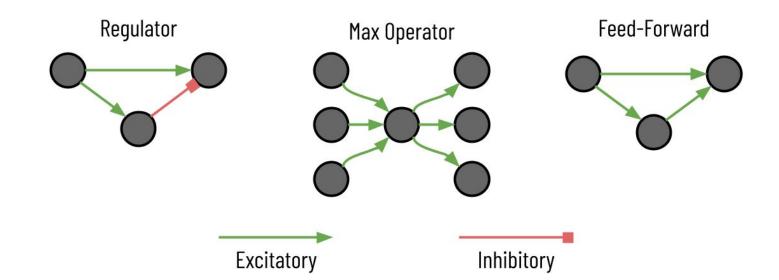
Similar motifs can have variable functionalities depending on the connections



Creating Graphs that Better Resemble the Biology

Similar motifs can have variable functionalities depending on the connections

Edges can be excitatory/inhibitory, or even represent chemical/electrical synapse connections



Datasets

Drosophila

Α	Age	Sex	Neurons	Edges	Edge Types
	Adult	Female	21,739	841,720	Moderate/Strong

C. elegans Development

C. elegans Sexes

Datasets

Drosophila	Age	Sex	Neurons	Edges	Edge Types
2.ccop.iiia	0 hr	Hermaphrodite	225	775	N/A
	5 hr	Hermaphrodite	225	986	N/A
C. elegans Development	8 hr	Hermaphrodite	225	1,006	N/A
	16 hr	Hermaphrodite	225	1,101	N/A
C. elegans Sexes	23 hr	Hermaphrodite	225	1,504	N/A
	27 hr	Hermaphrodite	225	1,524	N/A
	Adult (50 hr)	Hermaphrodite	225	2,193	N/A
	Adult (50 hr)	Hermaphrodite	225	2,189	N/A

Datasets

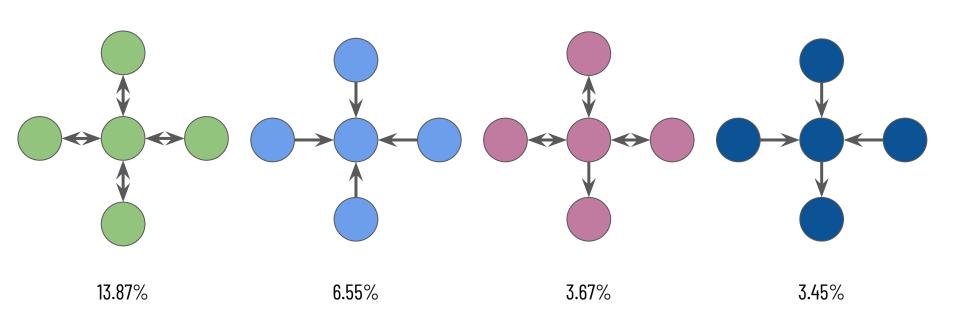
Drosophila	Age	Sex	Neurons	Edges	Edge Types
	Adult	Hermaphrodite	473	6,897	Chem/Elec/Both
	Adult	Male	598	7,725	Chem/Elec/Both
Calamana Davidannant					

C. elegans Development

C. elegans Sexes

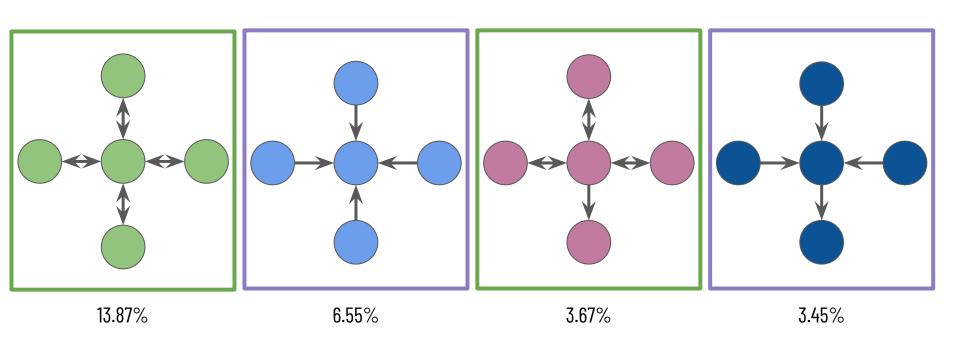
Common Subgraphs in *Drosophila*

The four most common motifs of size 5 accounts for over 27.5% of all subgraphs



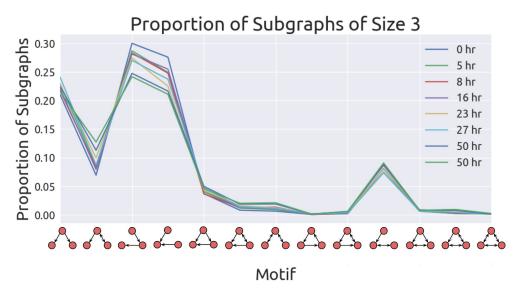
Common Subgraphs in *Drosophila*

The four most common motifs of size 5 accounts for over 27.5% of all subgraphs



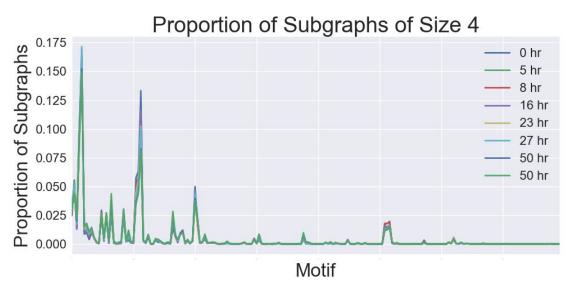
Developmental Growth of *C. elegans*

Amazingly, the relative proportions of specific subgraphs of size 3 and 4 does not differ significantly across the *C. elegans* development



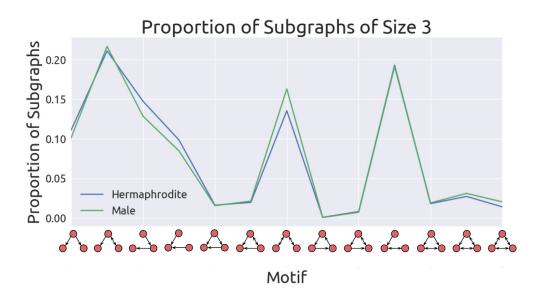
Developmental Growth of *C. elegans*

Amazingly, the relative proportions of specific subgraphs of size 3 and 4 does not differ significantly across the *C. elegans* development



Comparison Between the Two C. Elegans Sexes

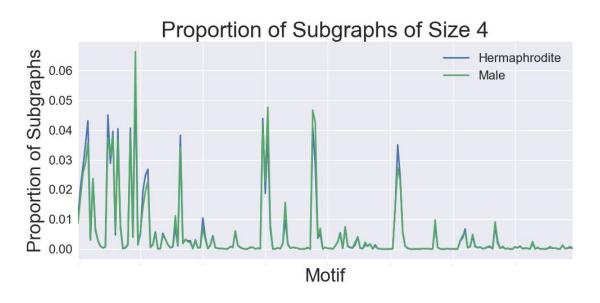
Both the adult sexes of the *C. elegans* samples compared had very similar motif counts for k = 3 and 4



These C. elegans datasets are not directly comparable to the previous set since they contain end-organs, muscles, and gap junctions

Comparison Between the Two C. Elegans Sexes

Both the adult sexes of the *C. elegans* samples compared had very similar motif counts for k = 3 and 4



These C. elegans datasets are not directly comparable to the previous set since they contain end-organs, muscles, and gap junctions

Ablation Studies: Community-Based Motif Discovery

No. Communities	No. Subgraphs (k = 5)	Computation Time
1	12,522,283,314,604	2.77 yr
5	3,645,456,758,599	0.82 yr
10	2,130,560,777,611	0.48 yr
15	1,458,545,460,827	0.31 yr
20	1,014,016,146,436	0.22 yr
25	607,287,828,074	0.13 yr
30	456,303,664,640	0.098 yr

Ablation Studies: Edge Coloring

Detecet		No Edge/Edge C	Color Computation Time	es
Dataset	3	4	5	6
Drosophila	566.63 / 1053.48 s	2.15 / 4.39 d	2.77 / 6.12 yr	N/A
C. elegans Herm.	0.37 / 0.77 s	14.75 / 31.78 s	727.96 / 1607.75 s	9.53 / 21.76 hr
C. elegans Male	0.38 / 0.72 s	13.18 / 29.61 s	593.57 / 1296.49 s	7.13 / 16.38 hr

Dataset Publication

We publish summaries of all enumerated subgraphs from the twelve connectomes to enable further analysis from the community

Graph Type	No. Subgraphs	Computation Time
Standard	13,153,746,555,370	2.92 yr
Edge Colored	12,568,788,861,035	6.13 yr
Community-Based	9,362,073,052,898	2.08 yr

Dataset Publication

We publish summaries of all enumerated subgraphs from the eleven connectomes to enable further analysis from the community

Graph Type	No. Subgraphs	Computation Time
Standard	13,153,746,555,370	2.92 yr
Edge Colored	12,568,788,861,035	6.13 yr
Community-Based	9,362,073,052,898	2.08 yr

35 trillion enumerated subgraphs

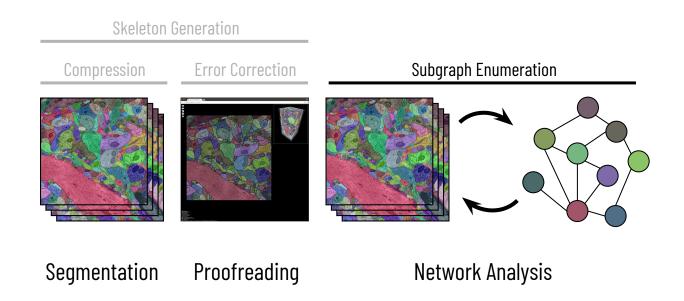
Dataset Publication

We publish summaries of all enumerated subgraphs from the eleven connectomes to enable further analysis from the community

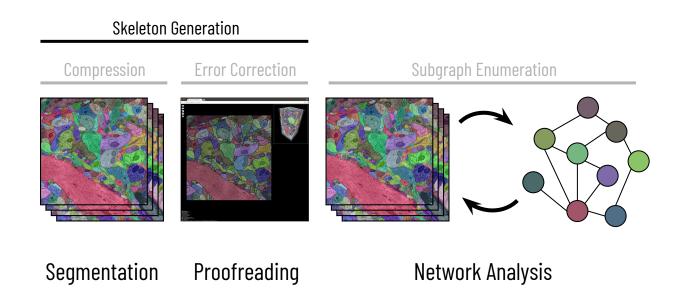
Graph Type	No. Subgraphs Computation Tim		
Standard	13,153,746,555,370	2.92 yr	
Edge Colored	12,568,788,861,035	6.13 yr	
Community-Based	9,362,073,052,898	2.08 yr	

35 trillion enumerated subgraphs over 11.13 years of computation time

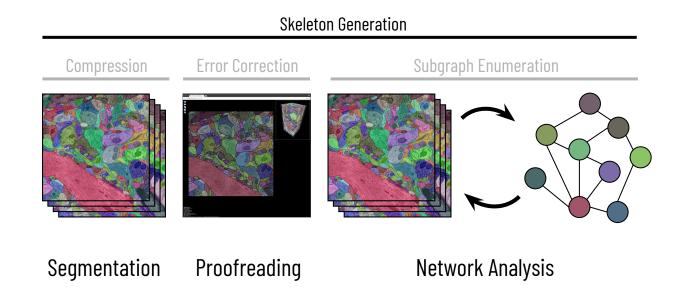
Biologically-Aware Algorithms Along the Connectomics Pipeline



Biologically-Aware Algorithms Along the Connectomics Pipeline



Biologically-Aware Algorithms Along the Connectomics Pipeline

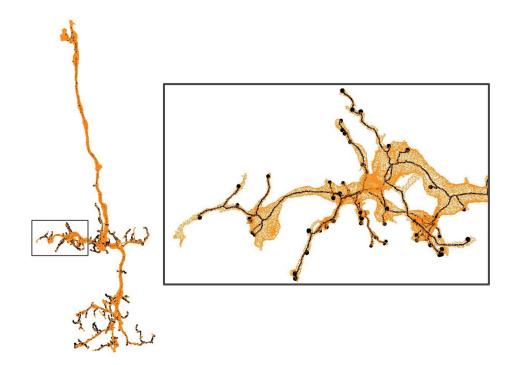


Scalable Biologically-Aware Skeleton Generation for Connectomic Volumes

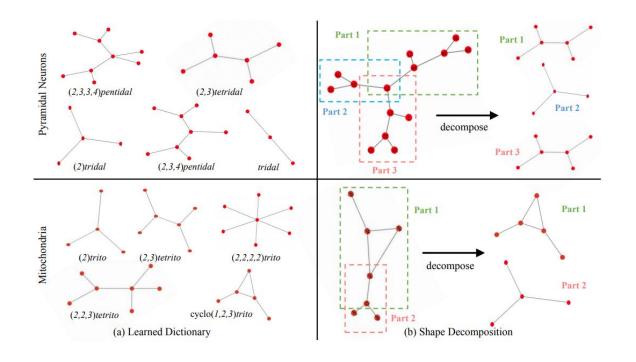
Brian Matejek, Tim Franzmeyer, Donglai Wei, Xueying Wang, Jinglin Zhao, Kálmán Palágyi, Jeff W. Lichtman, and Hanspeter Pfister

Skeletonized Representations of Label Volumes

Across the connectomics pipeline, skeletonized representations of the label volumes are incredibly useful

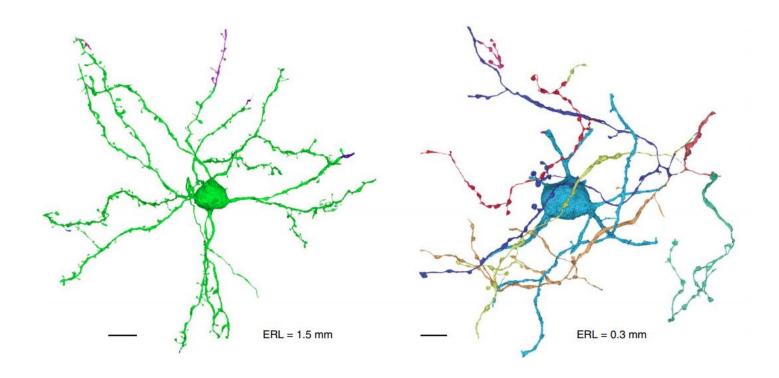


Skeletonization for Analysis



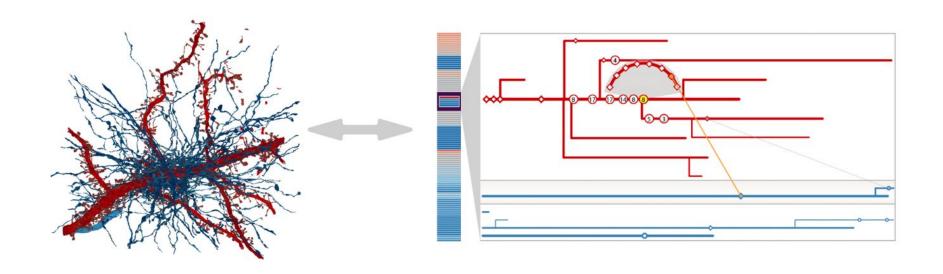
Xu et al., A Connectome of the Adult *Drosophila* Central Brain, biorxiv 2020 Talwar et al., A Topological Nomenclature for 3D Shape Analysis in Connectomics, CVPR Workshops 2020

Skeletonization for Segmentation Evaluation

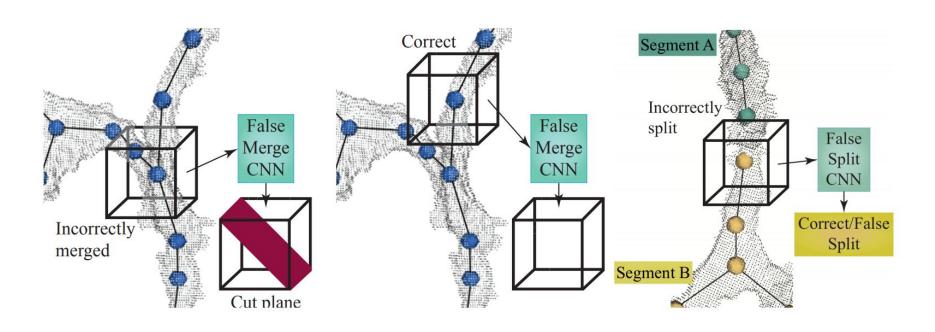


Januszewski et al., High-Precision Automated Reconstruction of Neurons with Flood-Filling Networks, Nature Methods 2018

Skeletonization for Visualization

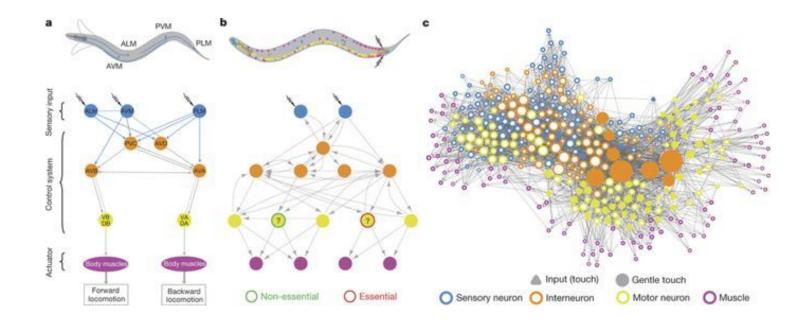


Skeletonization for Error Correction



Berning *et al.*, SegEM: Efficient Image Analysis for High-Resolution Connectomes, Neuron 2015 Dmitriev *et al.*, Efficient Correction for EM Connectomics with Skeletal Representation, BMVC 2018 Matejek *et al.*, Biologically-Constrained Graphs for Global Connectomics Reconstruction, CVPR 2018

Improving Wiring Diagrams with Skeletons



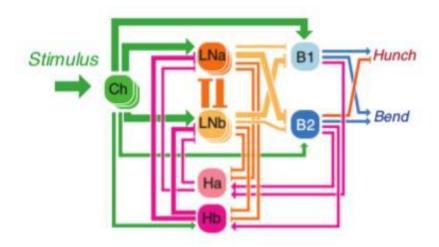
Current Graph-Based Wiring Diagram Methodology

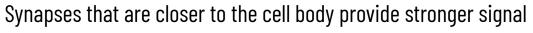
Each node represents one neuron

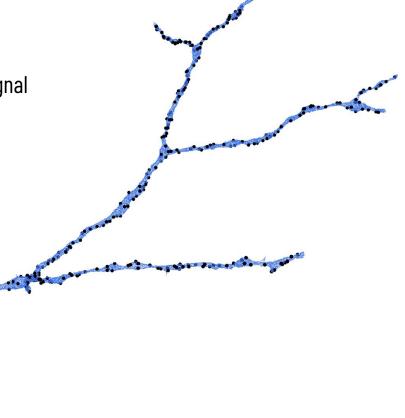
Current Graph-Based Wiring Diagram Methodology

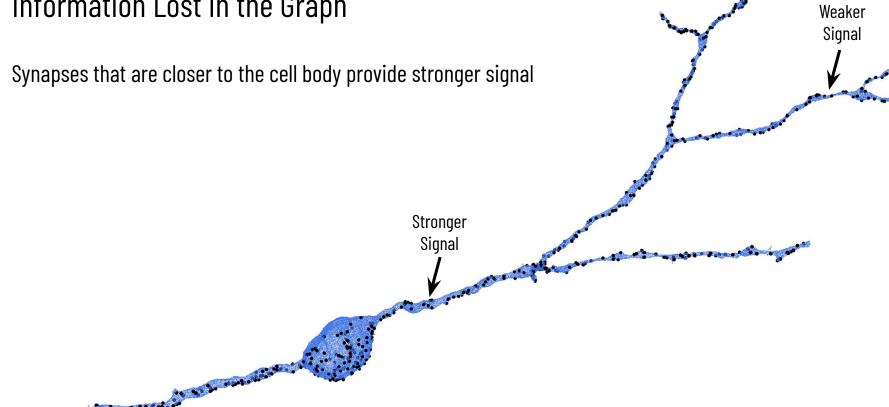
Each node represents one neuron

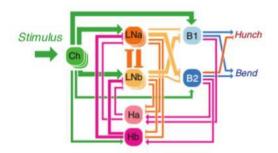
Weighted edges indicate number of synapses between two neurons



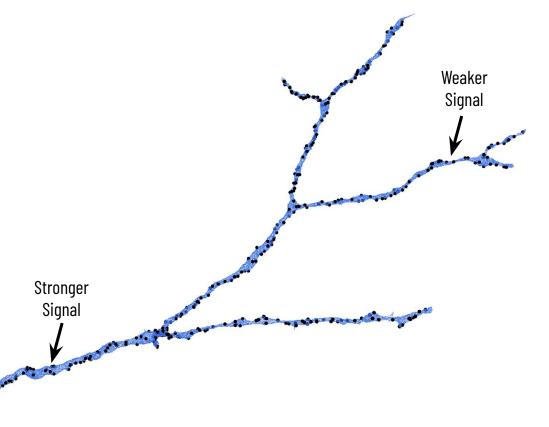








Can't rely only on number of connections alone

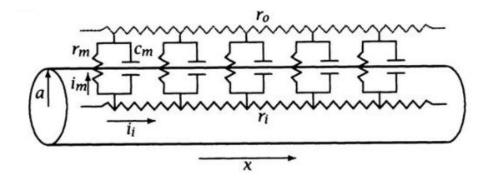


Width of neuron along path from synapse to cell body

Width of neuron along path from synapse to cell body

Cable Theory:

$$rac{1}{r_l}rac{\partial^2 V}{\partial x^2}=c_mrac{\partial V}{\partial t}+rac{V}{r_m}$$



Width of neuron along path from synapse to cell body

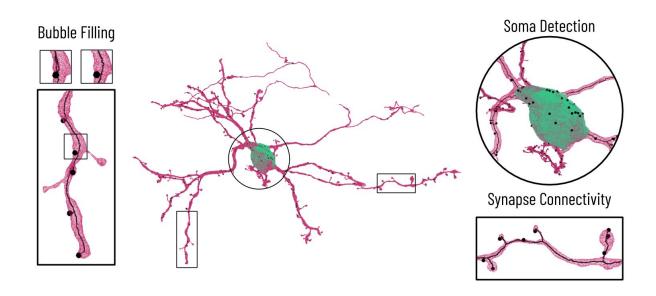
Cable Theory:

$$\frac{1}{r_l}\frac{\partial^2 V}{\partial x^2} = c_m \frac{\partial V}{\partial t} + \frac{V}{r_m}$$

 r_l, c_m, r_m are functions of the neurite diameter

Biologically-Aware Skeleton Generation

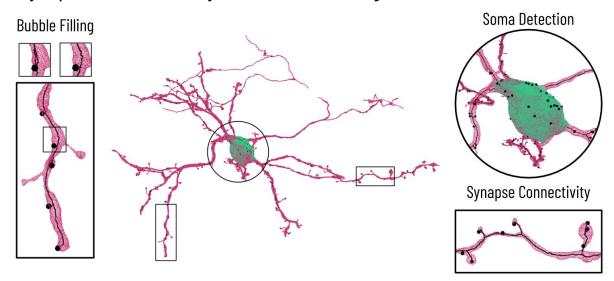
Generate skeletons that connect all synapses to the cell body



Biologically-Aware Skeleton Generation

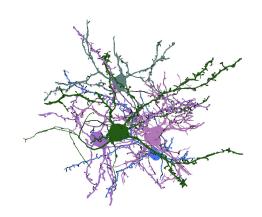
Generate skeletons that connect all synapses to the cell body

Calculate vital geometric statistics needed for evaluating the perceived synaptic strength like geodesic distance from the synapse to the cell body and the width along each neurite



Block-Based Processing

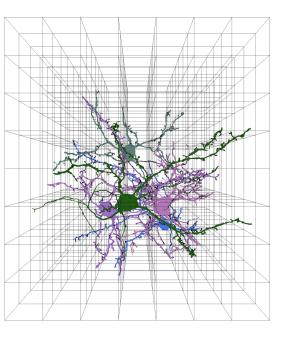
Connectome label volumes now regularly exceed hundreds of gigabytes



Block-Based Processing

Connectome label volumes now regularly exceed hundreds of gigabytes

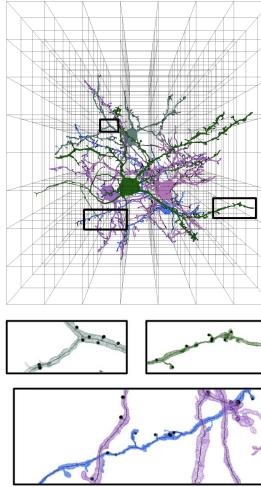
Processing needs to be mostly block-based for widespread adoption



Block-Based Processing

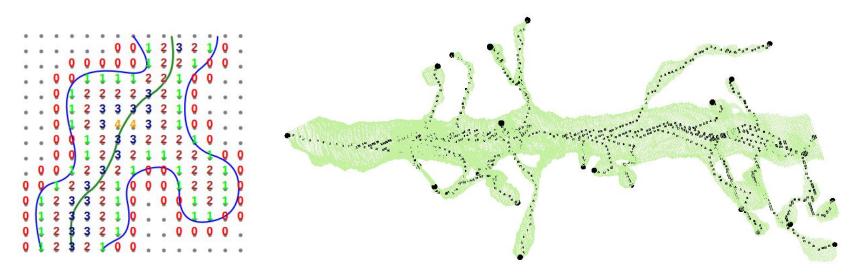
Connectome label volumes now regularly exceed hundreds of gigabytes

Processing needs to be mostly block-based for widespread adoption



Tree-structure Extraction Algorithm for Accurate and Robust Skeletons

TEASER is the predominantly used skeleton generation technique for connectomics

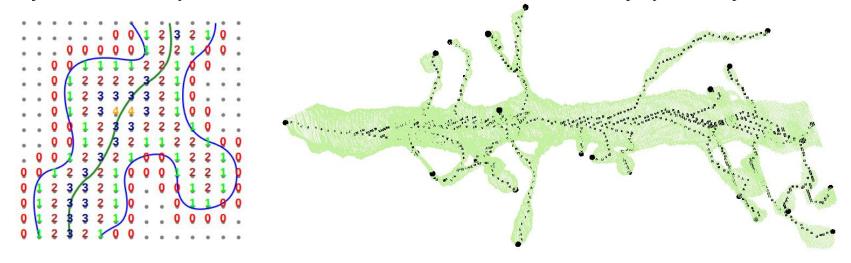


Sato *et al.*,TEASER: Tree-structure Extraction Algorithm for Accurate and Robust Skeletons, PCCGA 2000 Zhao *et al.*, NeuTu: Software for Collaborative, Large-Scale, Segmentation-Based Connectome Reconstruction, Frontiers in Neural Circuits 2018

Tree-structure Extraction Algorithm for Accurate and Robust Skeletons

TEASER is the predominantly used skeleton generation technique for connectomics

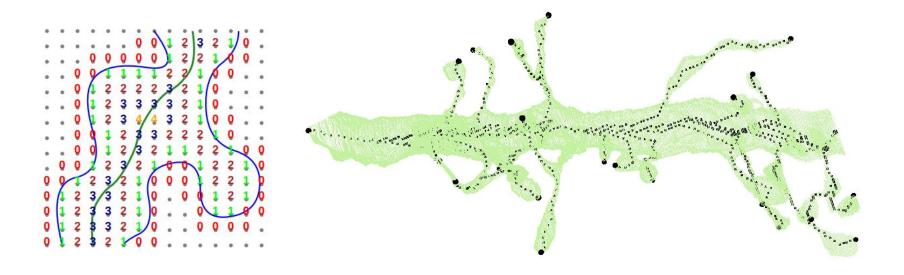
The algorithm continually identifies distant voxels to attach to a root voxel using Dijkstra's algorithm



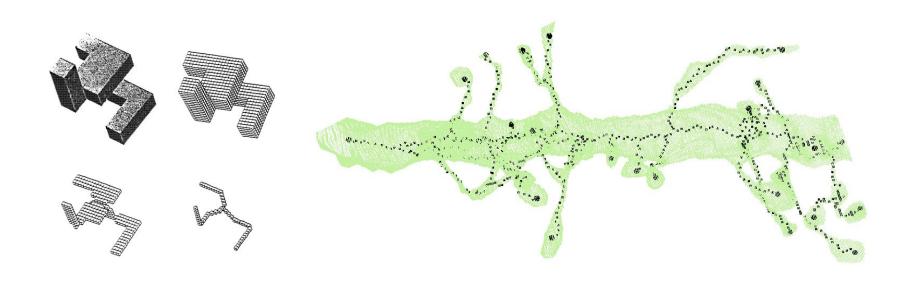
Sato *et al.*,TEASER: Tree-structure Extraction Algorithm for Accurate and Robust Skeletons, PCCGA 2000 Zhao *et al.*, NeuTu: Software for Collaborative, Large-Scale, Segmentation-Based Connectome Reconstruction, Frontiers in Neural Circuits 2018

Tree-structure Extraction Algorithm for Accurate and Robust Skeletons

Silversmith et al., have implemented a block-based version of the algorithm for larger connectome volumes

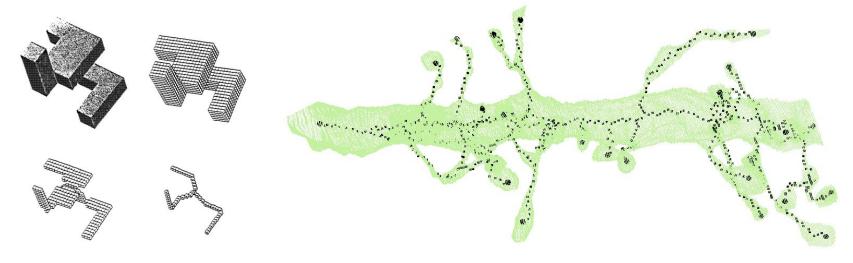


Topological thinning algorithms gradually erode the surface of a volume to a centerline



Topological thinning algorithms erode the surface of a volume to a centerline while preserving topology

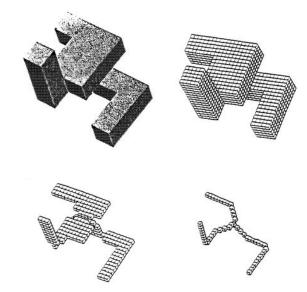
These algorithms rely only on the immediate local neighborhood around a voxel to determine deletion



Topological thinning algorithms iteratively consider all voxels on the boundary of a volume for deletion

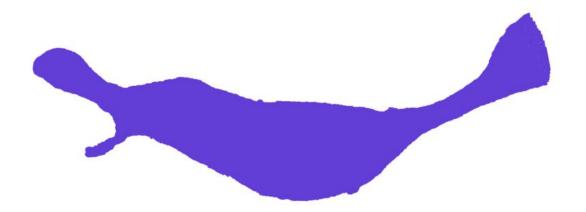
Lee et al., Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms, CVGIP 1994

Topological thinning algorithms iteratively consider all voxels on the boundary of a volume for deletion Points that are considered "Simple" are deleted, i.e., those that do not change the topology of the object



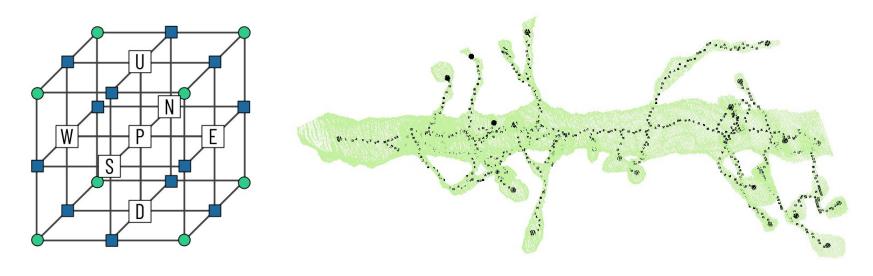
Lee et al., Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms, CVGIP 1994

However, certain points (e.g., endpoints) are preserved despite being simple



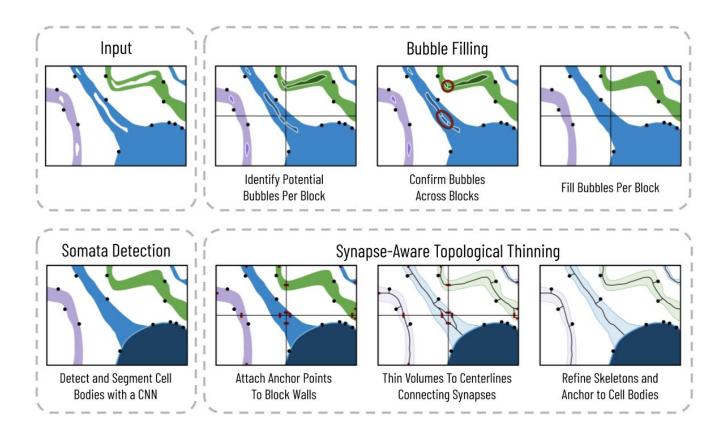
Isthmus Thinning

Other extensions on topological thinning define classes of voxels (e.g., isthmuses) that cannot be deleted to both preserve topology and create more expressive skeletons

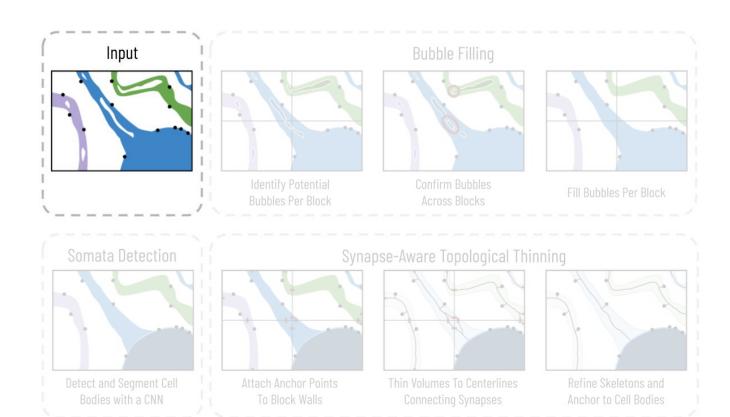


Palagyi, K., A Sequential 3D Curve-Thinning Algorithm Based on Isthmuses, International Symposium on Visual Computing 2014.

Proposed Skeleton Generation

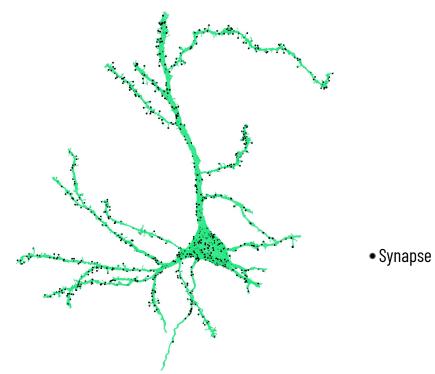


Input

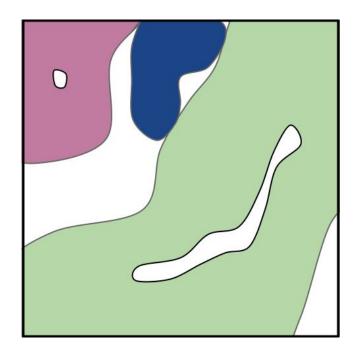


Input Segmentations and Synapses

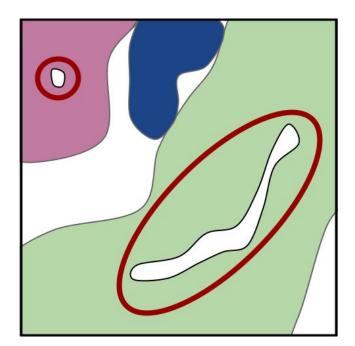
Our method takes as input a label volume and a corresponding set of synapse locations



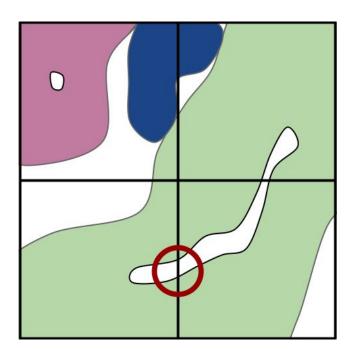
Segmentations can contain millions of bubbles



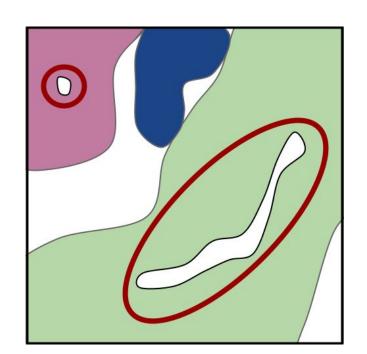
Segmentations can contain millions of bubbles, i.e., pockets of mislabeled voxels contained within a label

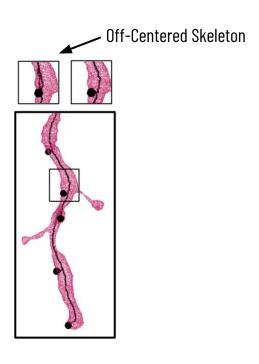


These bubbles can span across multiple blocks and therefore we need to consider global information

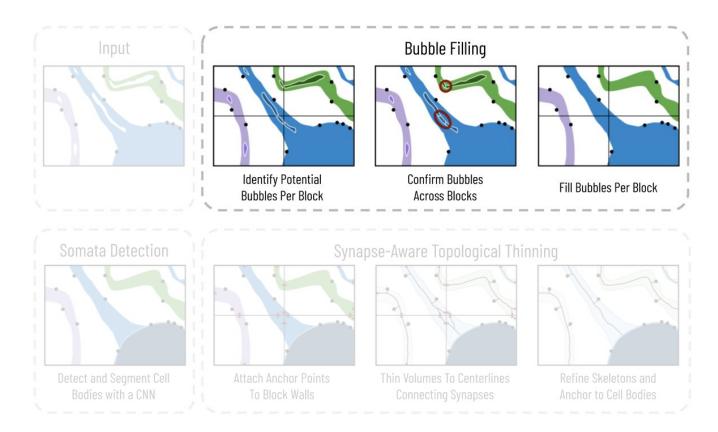


These biologically-infeasible bubbles increase thinning runtime and cause errors in width estimation



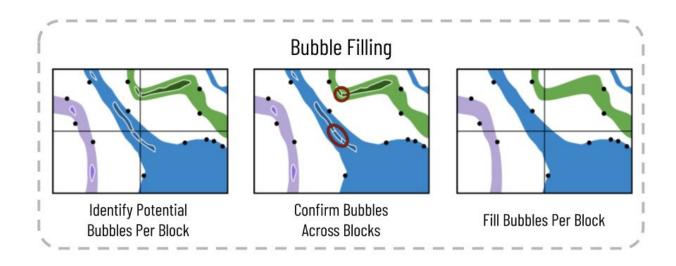


Goal: Fill bubbles in the input segmentation



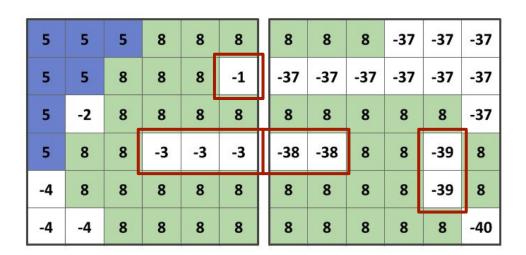
Parallelizable Bubble Filling

We divide the bubble filling process into two computationally expensive but parallelizable operations and one computationally cheap step that requires global scope



Identify Potential Bubbles Per Block

Our method identifies bubbles per block



Identify Potential Bubbles Per Block

Our method identifies bubbles per block, links bubbles across blocks

5	5	5	8	8	8	8	8	8	-37	-37	-37
5	5	8	8	8	-1	-37	-37	-37	-37	-37	-37
5	-2	8	8	8	8	8	8	8	8	8	-37
5	8	8	-3	-3	-3	-38	-38	8	8	-39	8
-4	8	8	8	8	8	8	8	8	8	-39	8
-4	-4	8	8	8	8	8	8	8	8	8	-40

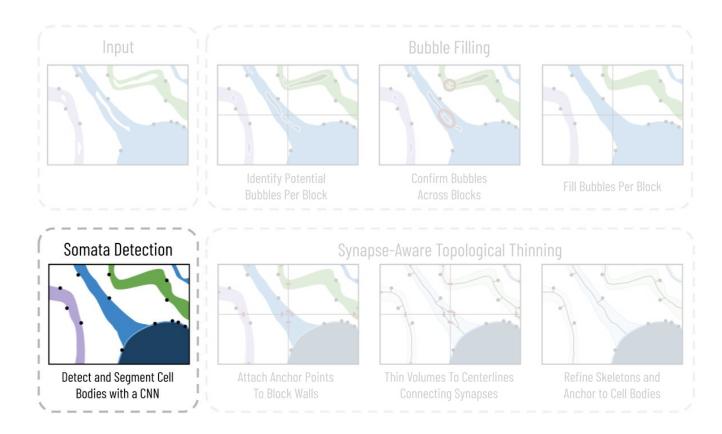
Identify Potential Bubbles Per Block

Our method identifies bubbles per block, links bubbles across blocks, and then fills in the bubbles creating dense neurons

5	5	5	8	8	8
5	5	8	8	8	-1
5	-2	8	8	8	8
5	8	8	8	8	8
-4	8	8	8	8	8
-4	-4	8	8	8	8

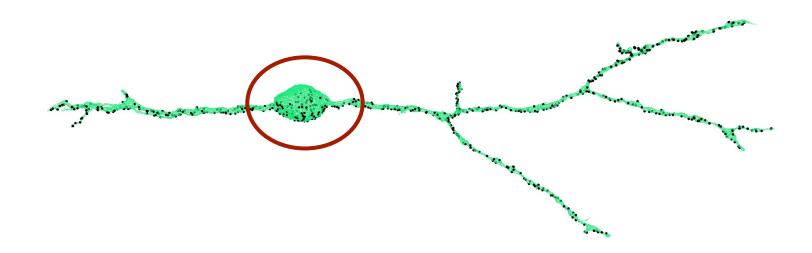
-					
8	8	8	-37	-37	-37
-37	-37	-37	-37	-37	-37
8	8	8	8	8	-37
8	8	8	8	8	8
8	8	8	8	8	8
8	8	8	8	8	-40

Goal: Detect somata to anchor skeletons onto the cell body



Cell Bodies

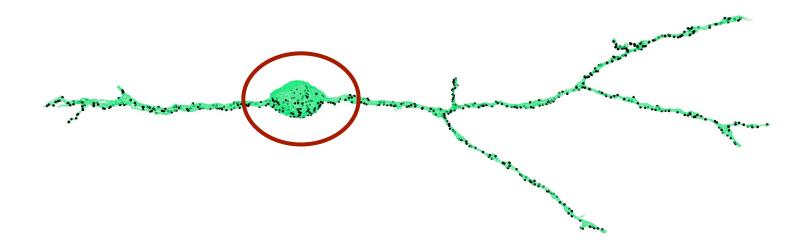
We can significantly reduce the total runtime by masking out the cell bodies before thinning



Cell Bodies

We can significantly reduce the total runtime by masking out the cell bodies before thinning

In some volumes, cell bodies represent up to 65% of the total volume

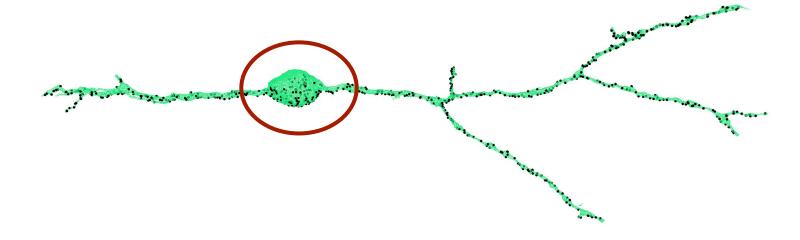


Cell Bodies

We can significantly reduce the total runtime by masking out the cell bodies before thinning

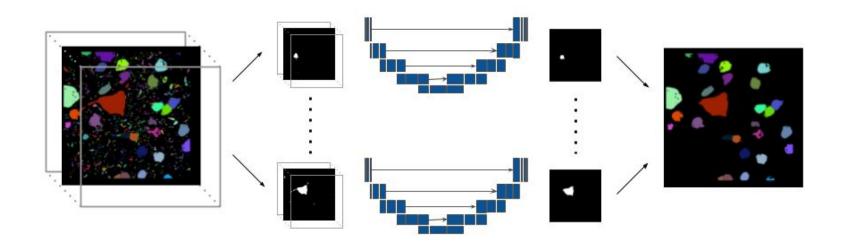
In some volumes, cell bodies represent up to 65% of the total volume

This also enables us to anchor the skeletons on the cell body



Cell Body Detection

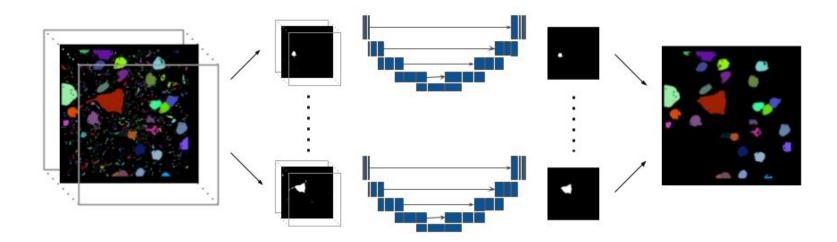
We train a U-Net to identify individual cell bodies in each slice of the label volume



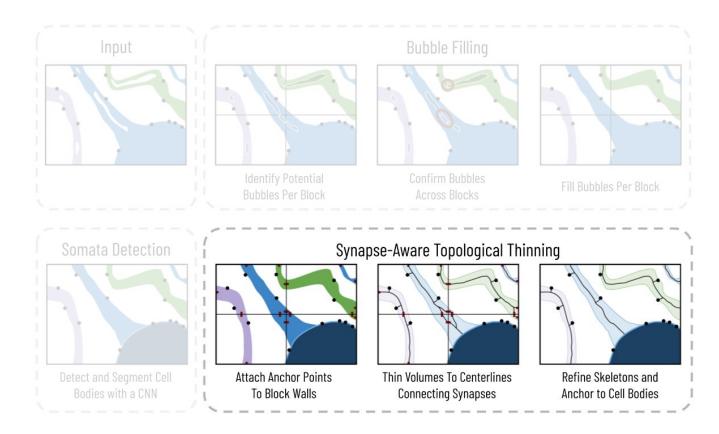
Cell Body Detection

We train a U-Net to identify individual cell bodies in each slice of the label volume

We find that U-Nets trained on one dataset transfer well to others

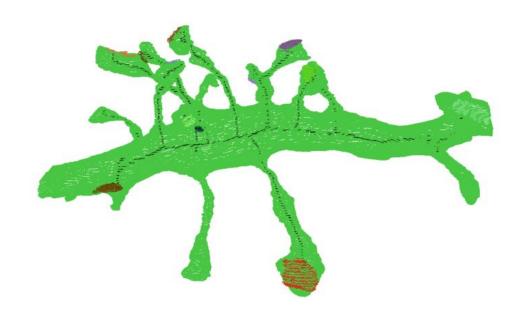


Goal: Extract accurate skeletons that connect all synapses to the cell body



Synapse-Aware Topological Thinning

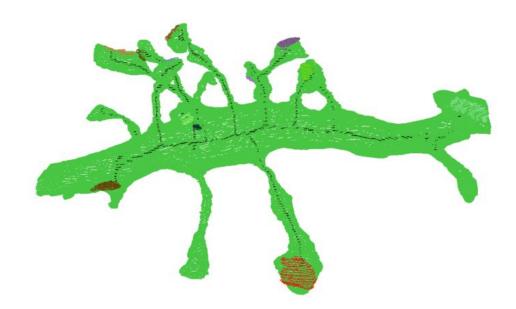
We do not allow the deletion of synapses from the skeleton



Synapse-Aware Topological Thinning

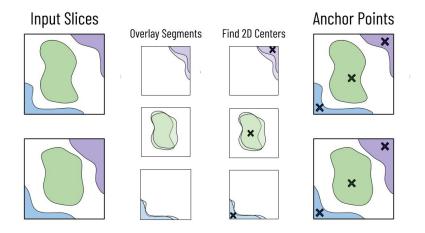
We do not allow the deletion of synapses from the skeleton

This guarantees that every synapse will remain connected in the skeletons



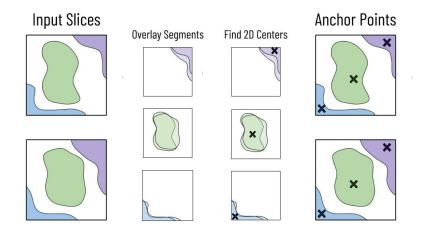
Attach Anchor Points to Block Walls

We need to guarantee that the skeletons generated in each block connect to those in neighboring blocks



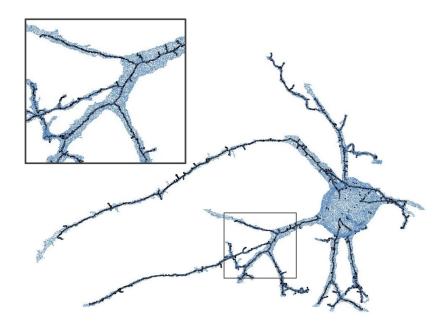
Attach Anchor Points to Block Walls

We need to guarantee that the skeletons generated in each block connect to those in neighboring blocks. For each pair of neighboring blocks, we look at the intersections of the adjacent block surfaces

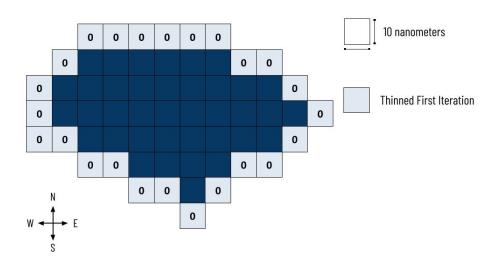


Thin Volumes to Centerlines Connecting Synapses

After determining anchor points, we can thin each segmentation per block

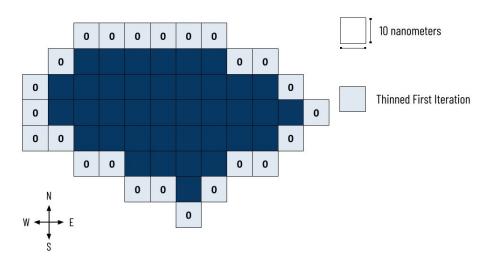


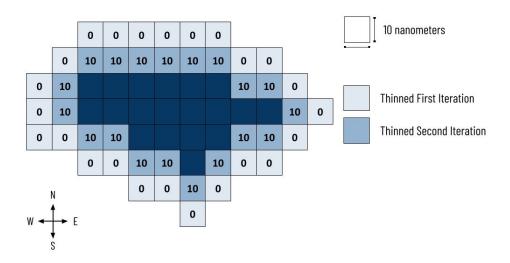
During topological thinning, we estimate the nearest distance from a thinned point to the cell boundary

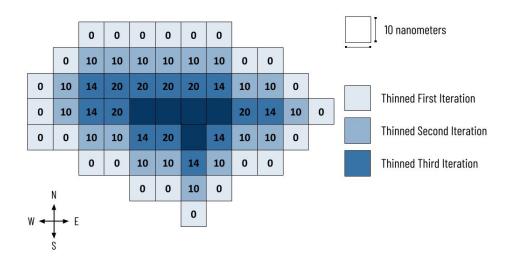


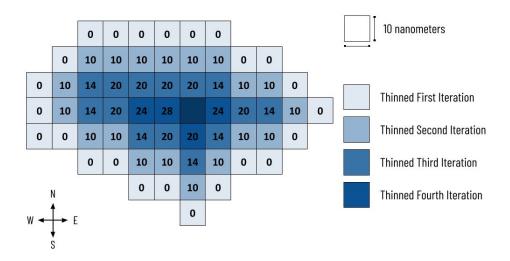
During topological thinning, we estimate the nearest distance from a thinned point to the cell boundary

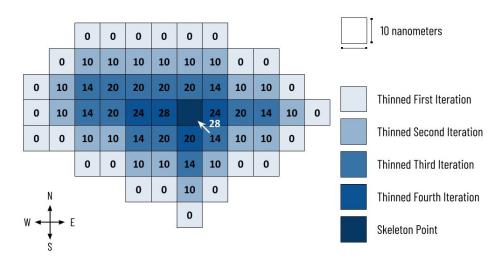
Voxels on the cell boundary are initialized at a distance of 0











Refine Skeletons and Anchor to Cell Bodies

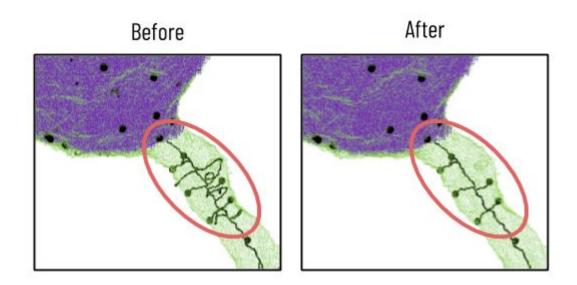
Tunnels through the label volumes can cause loops in the skeletons



Refine Skeletons and Anchor to Cell Bodies

Tunnels through the label volumes can cause loops in the skeletons

We simultaneously remove these loops and calculate the geodesic distance from each synapse to the soma

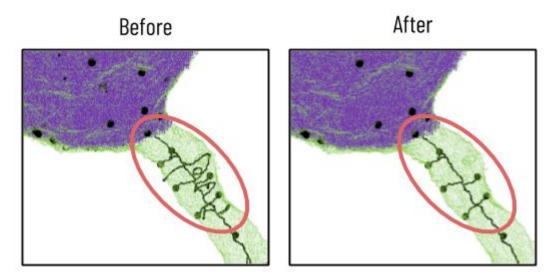


Refine Skeletons and Anchor to Cell Bodies

Tunnels through the label volumes can cause loops in the skeletons

We simultaneously remove these loops and calculate the geodesic distance from each synapse to the soma

Although this step requires global scope, it is incredibly quick since it requires only the skeletons

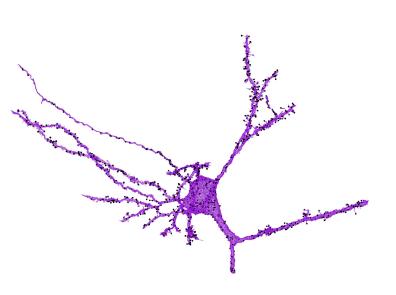


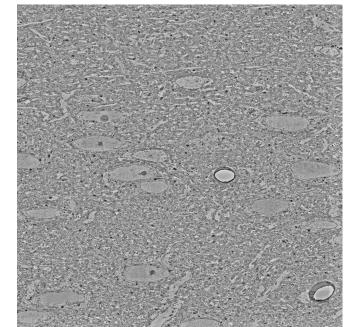
Datasets

JWR

FIB-25

J0126





 $106 \times 106 \times 93 \ \mu m^3$

32 x 64 x 30 nm³ / vx

85 Neurons

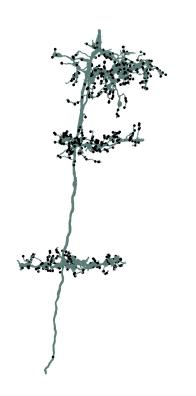
50,334 Synapses

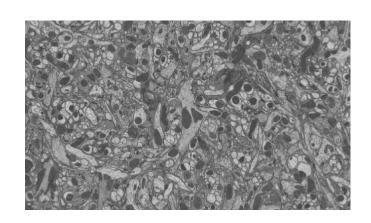
Datasets

JWR

FIB-25

J0126





36 x 29 x 69 µm³

10 x 10 x 10 nm³ / vx

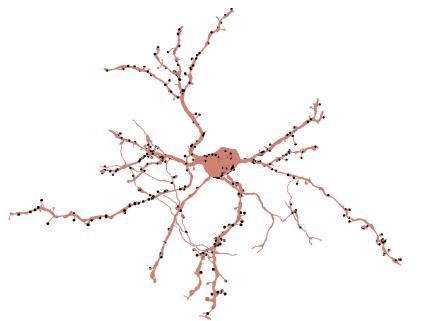
763 Neurons

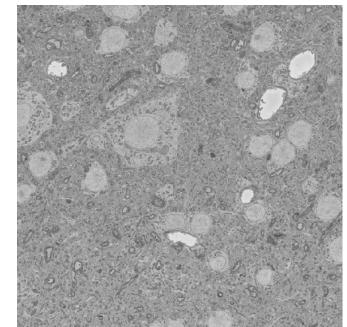
84,157 Synapses

JWR

FIB-25

J0126





96 x 98 x 114 µm³

18 x 18 x 20 nm³ / vx

407 Neurons

91, 465 Synapses

Neural Reconstruction Integrity (NRI)

The NRI score measures how well a method preserves the intracellular pathways between synapses

Neural Reconstruction Integrity (NRI)

The NRI score measures how well a method preserves the intracellular pathways between synapses

We adapt the method to measure the correspondence between synapses and endpoints

Neural Reconstruction Integrity (NRI)

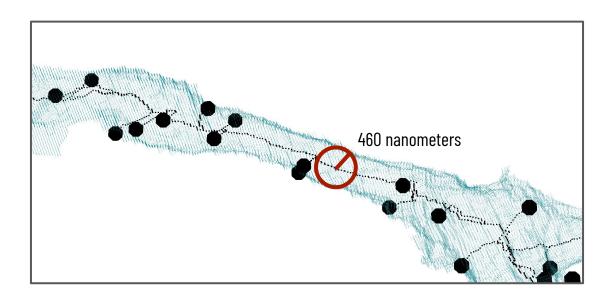
The NRI score measures how well a method preserves the intracellular pathways between synapses

We adapt the method to measure the correspondence between synapses and endpoints

For the baselines, we consider a synapse mapped to an endpoint if they are within 1600 nanometers

Width Estimation

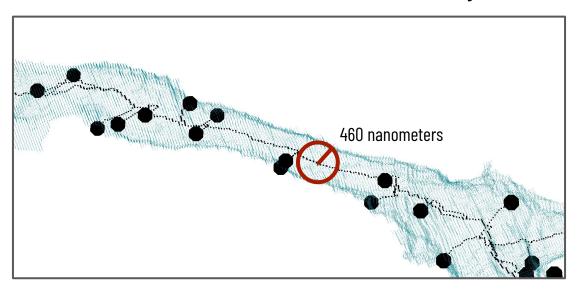
For each point along the skeleton path, we calculate the largest sphere that we could center at that point without leaving the volume



Width Estimation

For each point along the skeleton path, we calculate the largest sphere that we could center at that point without leaving the volume

We use this as an estimate for the cross-sectional width of the neurite at a given location



Skeleton Simplicity

Our final evaluation metric considers skeleton simplicity—the number of points in the skeleton

Skeleton Simplicity

Our final evaluation metric considers skeleton simplicity—the number of points in the skeleton

All else equal, fewer points is better

Mathad	JWR			FIB-25			J0126		
Method	NRI (↑)	Width (↓)	Points (↓)	NRI (↑)	Width (↓)	Points (↓)	NRI (↑)	Width (↓)	Points (↓)
Proposed	0.9988	40.03 nm	26,752	0.9952	14.42 nm	11,755	0.9997	25.55 nm	25,562
TEASER	0.1011	120.69 nm	18,250	0.2477	19.78 nm	10,216	0.1729	171.33 nm	33,022
Isthmus Thinning	0.2574	N/A	1,645,966	0.3158	N/A	39,873	0.2454	N/A	1,089,923

Mathad	JWR			FIB-25			J0126		
Method	NRI (↑)	Width (↓)	Points (\downarrow)	NRI (↑)	Width (↓)	Points (↓)	NRI (↑)	Width (↓)	Points (↓)
Proposed	0.9988	40.03 nm	26,752	0.9952	14.42 nm	11,755	0.9997	25.55 nm	25,562
TEASER	0.1011	120.69 nm	18,250	0.2477	19.78 nm	10,216	0.1729	171.33 nm	33,022
Isthmus Thinning	0.2574	N/A	1,645,966	0.3158	N/A	39,873	0.2454	N/A	1,089,923

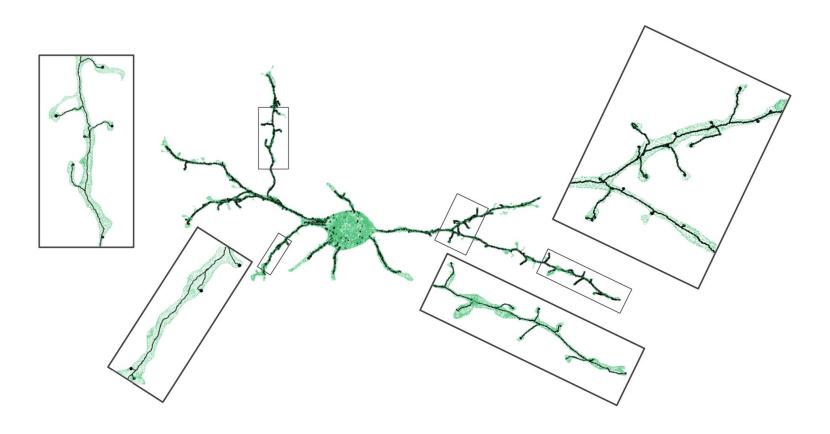
We improve on NRI score by 288%, 215%, and 307% over the next best method

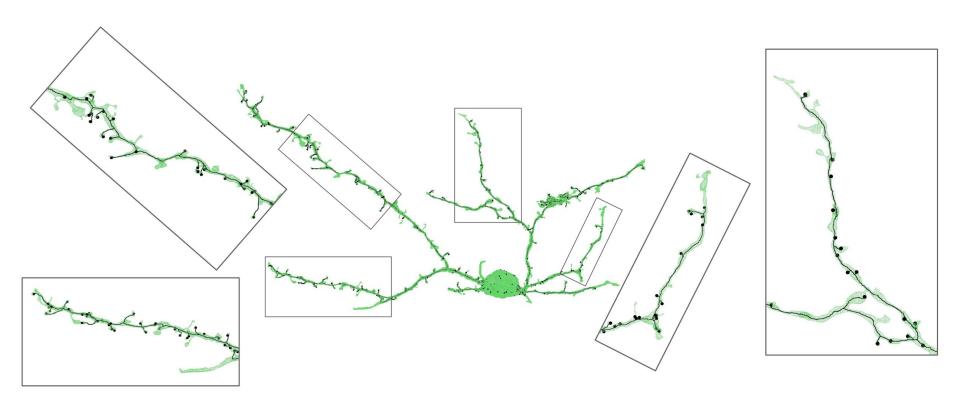
Method	JWR			FIB-25			J0126		
	NRI (↑)	Width (↓)	Points (↓)	NRI (↑)	Width (↓)	Points (↓)	NRI (↑)	Width (↓)	Points (↓)
Proposed	0.9988	40.03 nm	26,752	0.9952	14.42 nm	11,755	0.9997	25.55 nm	25,562
TEASER	0.1011	120.69 nm	18,250	0.2477	19.78 nm	10,216	0.1729	171.33 nm	33,022
Isthmus Thinning	0.2574	N/A	1,645,966	0.3158	N/A	39,873	0.2454	N/A	1,089,923

We improve on the width estimates by 67%, 27%, and 85% over the next best method

Mathad	JWR			FIB-25			J0126		
Method	NRI (↑)	Width (↓)	Points (\downarrow)	NRI (↑)	Width (\downarrow)	Points (↓)	NRI (↑)	Width (↓)	Points (↓)
Proposed	0.9988	40.03 nm	26,752	0.9952	14.42 nm	11,755	0.9997	25.55 nm	25,562
TEASER	0.1011	120.69 nm	18,250	0.2477	19.78 nm	10,216	0.1729	171.33 nm	33,022
Isthmus Thinning	0.2574	N/A	1,645,966	0.3158	N/A	39,873	0.2454	N/A	1,089,923

TEASER has fewer points on two of the three datasets





Ablation Studies: Bubble Filling

The J0126 reconstruction (automatic with Flood-Filling Networks), had over 24 million bubbles, corresponding to 0.80% of the total volume

Ablation Studies: Bubble Filling

The J0126 reconstruction (automatic with Flood-Filling Networks), had over 24 million bubbles, corresponding to 0.80% of the total volume

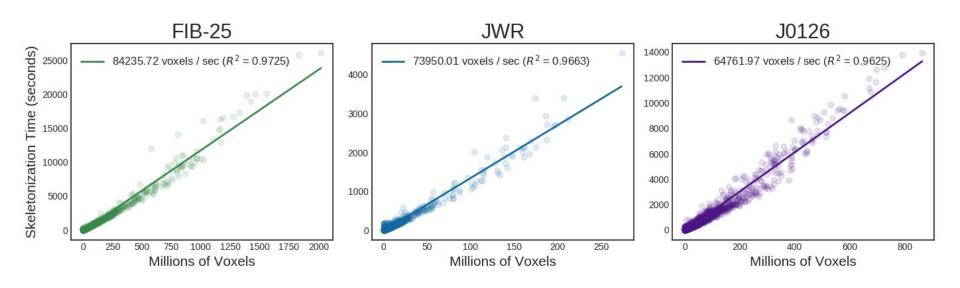
Removing these bubbles reduced topological thinning time by 57.16%

Ablation Studies: Soma Detection

We predict which voxels belong to cell bodies with 99.28% accuracy (TPR: 99.77%, FPR: 0.76%)

Masking out the cell bodies reduces the running time of topological thinning by 49.95% and 60.21% on the JWR and J0126 datasets, respectively

Ablation Studies: Synapse-Aware Topological Thinning



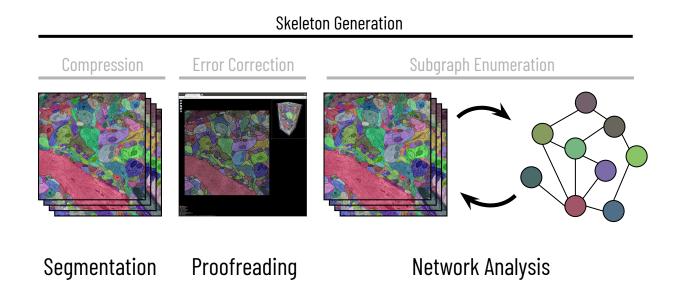
Ablation Studies: Computational Complexity

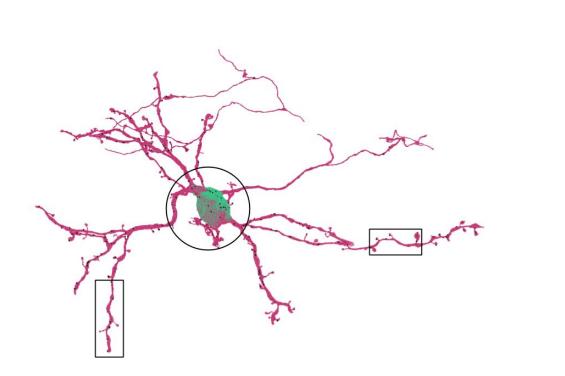
Method	JWR	FIB-25	J0126
Entire Pipeline	5.19 hr	N/A	45.29 hr
No Bubble Filling	4.03 hr	N/A	78.85 hr
No Soma Detection	10.37 hr	33.54 hr	113.82 hr
Only Thinning	20.56 hr	30.72 hr	479.19 hr

Ablation Studies: Computational Complexity

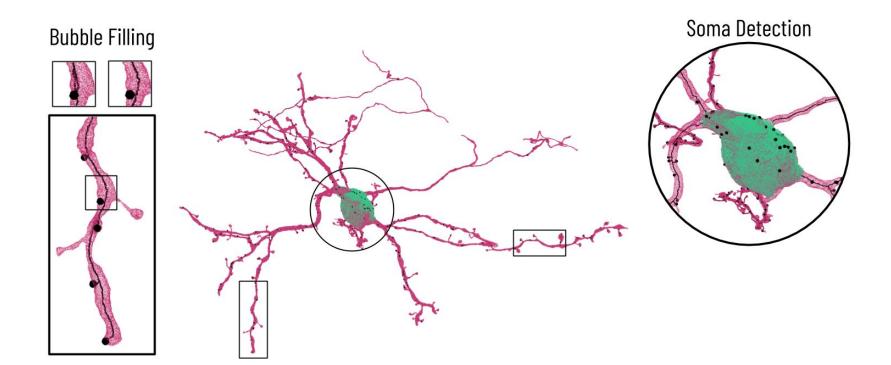
Method	JWR	FIB-25	J0126
Entire Pipeline	5.19 hr	N/A	45.29 hr
No Bubble Filling	4.03 hr	N/A	78.85 hr
No Soma Detection	10.37 hr	33.54 hr	113.82 hr
Only Thinning	20.56 hr	30.72 hr	479.19 hr

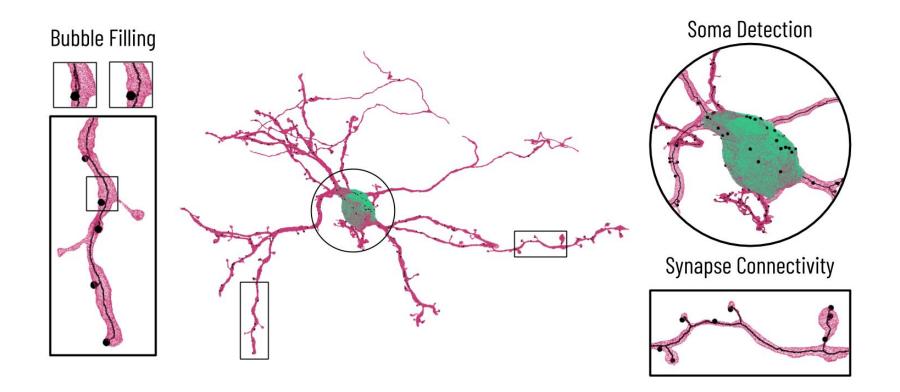
Biologically-Aware Algorithms for Connectomics





Bubble Filling

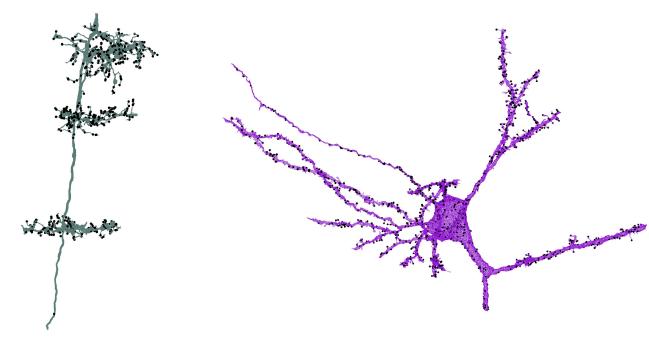




Future Directions

Different Biological-Constraints for Error Correction

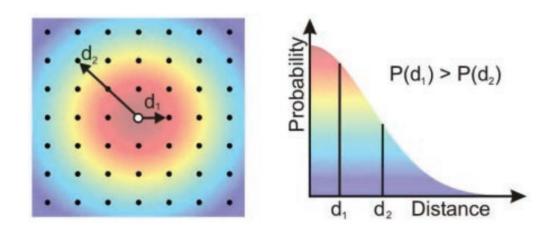
Biological-constraints should differ between species as morphologies can look wildly different



Fruit Fly Rat

Random Graph Generation for Motif Discovery

Random graphs allow us to identify subgraphs that appear more frequently than expected

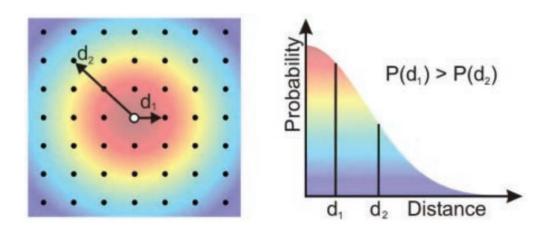


Artzy-Randrup, Comment on "Network Motifs: Simple Building", Science 2004

Random Graph Generation for Motif Discovery

Random graphs allow us to identify subgraphs that appear more frequently than expected

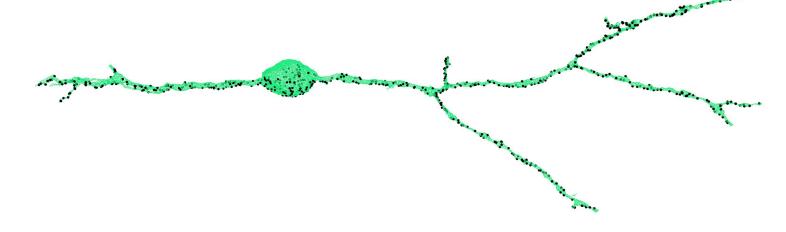
Without using biological priors on our random graphs, we can mistakenly identify "important motifs"



Artzy-Randrup, Comment on "Network Motifs: Simple Building", Science 2004

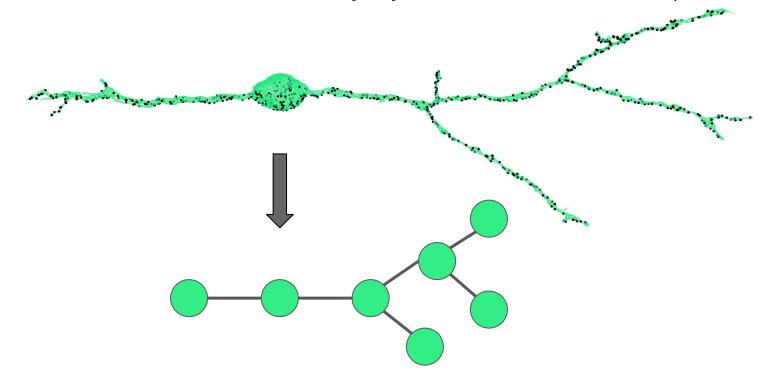
Augmenting the Wiring Diagram with Skeletonization

Current wiring diagrams ignore any interplay between neurites



Augmenting the Wiring Diagram with Skeletonization

Neurites themselves can each become nodes in a wiring diagram where neurons become multiple nodes



Acknowledgements

Hanspeter Pfister

Acknowledgements

Todd Zickler

Michael Mitzenmacher

Acknowledgements

Tianyi Chen

Tim Franzmeyer

Daniel Haehn

Fritz Lekschas

Jeff W. Lichtman

Michael Mitzenmacher

Kálmán Palágyi

Toufiq Parag

Hanspeter Pfister

Babis Tsourakakis

Snow Wang

Donglai Wei

Jinglin Zhao

Haidong Zhu

Visual Computing Group

Questions?