
Segmentation of Electron Microscopy Images for Connectomics

Brian Matejek
Advisor: Hanspeter Pfister

Harvard University
bmatejek@seas.harvard.edu

1. Introduction
One of the critical components of connectomics—the

field concerned with reconstructing the wiring diagram of
the brain at nanometer resolution—is automatic segmenta-
tion of electron microscopy (EM) images. With recent ad-
vancements in EM acquisition techniques, neuroscientists
can now generate a terabyte of image data every hour [44].
These images are typically anisotropic with 4nm resolution
in the xy plane and 30 to 40nm between slices. At this res-
olution, we can see the axon terminals and dendritic spines,
and the synaptic connections between them. Neuroscien-
tists hope to further the understanding of the brain’s under-
lying circuitry with accurate reconstructions of every neu-
ron and classification of every synapse.

An ambitious manual reconstruction effort in the 1980s
resulted in the first complete connectome of any animal,
the Caenorhabditis elegans worm [56]. This species has
302 neurons and manual labeling required several years.
More recent studies focus on Drosophila flies [23, 50], ro-
dents [44], and even humans [47]. With an EM throughput
of one terabyte per hour, neuroscientists can image a cubic
millimeter of data (two petabytes) in six months [48]. At
this scale, the manual reconstruction techniques of the 80s
are infeasible. Thus, researchers rely on machine learning
methods to segment these massive datasets into label vol-
umes (Fig. 1). These label volumes assign a 32- or 64-bit
integer to every voxel where voxels have the same label only
if they belong to the same neuron.

Uncompressed, these label volumes are larger in size
than the already massive image datasets. In our paper pub-
lished in MICCAI 2017, we explore the effectiveness of ex-
isting general-purpose, image, and video compression tech-
niques on these segmentation datasets [32]. We find that
these existing techniques fail to adequately exploit the typ-
ical properties of these label volumes. Thus, we propose
Compresso, a new compression algorithm specifically tai-
lored for large segmentation datasets, which achieves better
compression ratios than all existing methods.

Automatic reconstruction techniques need to be fast,
scalable, and accurate. Ideally, image acquisition is the

Figure 1: From an EM image stack, 3D convolutional neu-
ral networks generate affinities between voxels (left). A wa-
tershed algorithm agglomerates the voxels into supervox-
els using these affinities, and these supervoxels are further
merged to form a complete segmentation (center). These
methods often produce errors and require error correction
algorithms to improve the accuracy (right).

bottleneck of the connectomics pipeline so reconstruction
should occur at a rate of one terabyte per hour [16]. We can
achieve this throughput with parallelization among several
GPUs with existing techniques [13, 38]. However, these
automatic methods typically rely on local context for deci-
sion making and are agnostic about the underlying biologi-
cal systems. Thus, they often make errors at scale and cur-
rently require human proofreading or other error correction
techniques [17, 61].

We propose a novel region merging framework that takes
as input an oversegmentation of an EM image stack (under
review, ECCV 2018). Our method imposes both local and
global biological constraints onto the output segmentation
to more closely match the underlying structure of neuronal
processes. Additionally, our method is independent of im-
age resolution and acquisition parameters, enabling its ap-
plication to isotropic and anisotropic datasets without re-
training. Images generated by electron microscopes often
differ in appearance because of variations in staining tech-
niques [7]. By removing the dependence of our algorithm
on the input images, we greatly reduce the need for addi-
tional costly ground truth data for each new stack of im-
ages.

1



i

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 2: Compresso works by dividing up the segmentation data into small blocks. On the left we show the intersection of
three segments in a 4 � 4 � 1 window. We extract a boundary map from this segmentation to transform the window into an
integral value between 0 and 216 � 1. This window has an encoded value of 50,978 (21 + 25 + 28 + 29 + 210 + 214 + 215).
The location i requires some additional bookkeeping. On the right are the 100 most common 8� 8� 1 windows accounting
for � 82% of the volume on a representative dataset.

2. Compression of Label Volumes
An often overlooked aspect of these segmentation

datasets is how to efficiently store the label volumes. These
label volumes are often 32- or 64-bit to account for the mas-
sive number of neurons that interweave through a cubic mil-
limeter. Uncompressed, a cubic millimeter of segmentation
data is nearly 20 petabytes. Thus, compression techniques
are needed for fast transmission and cost-efficient storage.

2.1. Related Works

General-purpose compression schemes [11, 12, 14, 31,
35, 39, 45, 53, 55, 59] are not optimized for this data. These
methods do not exploit the typical characteristics of label
volumes such as large invariant regions without natural re-
lationship between label values. These properties render
2D image compression schemes inadequate since they rely
on frequency reduction (using e.g., wavelet or discrete co-
sine transform) and value prediction of pixels based on local
context (differential pulse-code modulation) [40, 46]. Color
space optimization strategies in video codecs [1] also have
no effect on label volumes, even though the spatial proper-
ties of a segmentation stack (z-axis) are similar to the tem-
poral properties of video data (time-axis). A compression
scheme designed specifically for label volumes is part of the
visualization software Neuroglancer [15]. This method ex-
ploits segmentation homogeneity by creating small blocks
with N labels and reducing local entropy to log2 N per
pixel. Lookup tables then decode the values [0, N) to the
original 64-bit labels.

2.2. Method

We propose Compresso, which is specifically designed
for compression of EM label volumes [32]. Compresso
works by decoupling the two important components across
the image stack: per-segment shape and per-pixel label. To
encode the segment shapes, we consider the boundary pix-
els between two segments. Removing the per-pixel labels,
we produce a boundary map for each slice where a pixel
(x, y, z) is 1 if either pixel at (x + 1, y, z) or (x, y + 1, z)

belongs to a different segment (Fig. 2, left). The bound-
ary map is divided into non-overlapping congruent 3D win-
dows. If there are n pixels per window, each window w is
assigned an integer Vw 2 [0, 2n) where Vw is defined as:

Vw =

n−1∑
i=0

I(i)2i, (1)

and I(i) is 1 if pixel i is on a boundary and 0 otherwise. Fig-
ure 2, left, shows an example segmentation with a window
size of 4� 4� 1.

A priori, each window could take any of 2n distinct val-
ues, and therefore require n bits to encode without further
manipulation. However, boundaries in segmentation im-
ages are not random, and many of these values never ap-
pear. Indeed, we find that a small subset of high-frequency
Vw values accounts for most windows, allowing for signifi-
cant compression. Figure 2, right, shows the 100 most com-
mon windows for a representative connectomics dataset.
These 100 frequently occurring windows account for ap-
proximately 82% of the over 1.2 million Vw values in this
dataset. Nearly all of these windows correspond to simple
lines traversing through the window. For contrast, we also
provide 5 randomly generated windows that never occur in
the dataset.

We define N as the number of distinct Vw representing
all of the windows in an image stack. We construct an in-
vertible function f(Vw)! [0, N) to transform the window
values into a smaller set of integers. For all real-world seg-
mentations N � 2n; however, we assume no constraint
on N in order to guarantee lossless compression. With this
function, each Vw requires log2 N bits of information to en-
code. This is fewer than the initial number of bits so long
as N � 2n−1. Therefore, when compressing the label vol-
umes, we can store f(Vw) for every window as well as a
lookup function for the N unique f(Vw) values to the orig-
inal integral value.

So far we have focused exclusively on transforming the
boundary map of an image segmentation. However, the per-
pixel labels themselves are equally important. The bound-

2



ary map divides each image slice into different segments.
By design, all pixels in the same segment have the same la-
bel so we store only one label per segment for each slice.
We use a connected-component labeling algorithm to iden-
tify each component and store one label per segment [19].

Thus far, we have assumed the boundaries provide
enough information to reconstruct the entire segmentation.
Pixels not on a segment boundary are easily relabeled.
However, more care is needed for pixels on the segment
boundaries. Consider �gure 2, left, which depicts a dif�cult
boundary to decode. If a boundary pixel has a non-boundary
neighbor to the left or above, then that pixel merely takes on
the value of that neighbor. However, pixeli requires more
care since its relevant neighbors are both boundary pixels.
We simply just store the label values for indeterminate pix-
els likei .

To decompress the data, we �rst reconstruct the bound-
ary map from the windows that we extracted. From there,
we can run the same deterministic connected-components
algorithm per slice. We can traverse through the saved la-
bels to �ll in all non-boundary labels. To determine the per-
pixel labels for every boundary pixel, we iterate over the
entire dataset in raster order. Any boundary pixel(x; y; z)
with a non-boundary neighbor at(x � 1; y; z) or (x; y � 1; z)
shares the same per-pixel label. If both relevant neighbors
are boundaries (i.e., like pixeli in Fig. 2) we extract the
value we previously stored.

2.3. Results

Our compression scheme outperforms all existing meth-
ods. We follow our scheme with LZMA which uses sophis-
ticated probabilistic bit prediction strategies and together
they achieve ratios of920� on average. This outperforms
existing strategies by over 80%. The fundamental principles
guiding Compresso are valid for a diverse set of segmenta-
tion datasets and we improve on existing methods for MRI
and image segmentation datasets. We compressed an 18 ter-
abyte label volume of 100 microns cubed to 26.2 gigabytes,
a ratio of� 687� .

3. Biologically-Constrained Region Merging

Automatic reconstruction methods need to be fast
enough to scale to petabyte datasets while still maintain-
ing a high-level of accuracy. The most accurate methods,
like �ood-�lling networks [22], are currently far too slow.
Unfortunately, methods that can scale to petabyte datasets
typically rely on only local context and can produce errors
at scale [16]. Therefore, it is necessary to employ error cor-
rection strategies on the segmentations from current recon-
struction pipelines. We propose a biologically-constrained
region merging algorithm to correctsplit errorsin the initial
segmentation.

3.1. Related Works

A signi�cant amount of connectomics research consid-
ers the problem of extracting segmentation information at
the voxel level of EM images. First, intermediate represen-
tations like boundary, af�nity or binary segmentation maps
are generated from the voxels. Random forests with hand-
designed features [25], or 2D and 3D convolutional net-
works produce boundary probabilities [5, 10, 20, 27, 42,
54]. Often, the af�nity between each voxel and its six neigh-
bors are used [9, 29, 30, 38, 52]. The 3D U-Net architec-
ture has become popular [9] and the MALIS cost function
is speci�cally designed to re-weight af�nity predictions by
their contribution to the segmentation error [6]. More re-
cently, �ood-�lling networks [22] produce binary segmen-
tations from raw pixels with a recurrent convolutional net-
work at a high computational cost. Orthogonal to the repre-
sentation, model averaging [57] and data augmentation [30]
methods can further improve the performance, where Lee
et al. [30] surpass the estimated human accuracy on the
SNEMI3D dataset.

Clustering techniques transform these intermediate rep-
resentations into segmentations. Some early methods apply
computationally expensive graph partitioning algorithms
with a single node per superpixel [3]. Several pixel-based
approaches generate probabilities that neighboring pixels
belong to the same neuron. Often a watershed algorithm
will then cluster these pixels into super-pixels [60].

Region merging methods can be categorized by the sim-
ilarity metric between adjacent segments and the merg-
ing strategy. For the similarity metric, Lee et al. and
Funke et al. rely solely on the accuracy of the predicted
af�nities and de�ne the metric as the mean af�nity be-
tween segments [13, 30]. Classi�cation-based methods
generate the probability to merge two segments from hand-
crafted [21, 27, 34, 37, 38, 60] and learned features [5]. For
the merging strategy, most methods use variants of hierar-
chical agglomeration [27, 34, 37, 38, 60] to greedily merge
a pair of regions at a time. Jain et al. formulates the ag-
glomeration problem as a reinforcement learning problem
[21] and Pape et al. present a scalable multicut algorithm to
partition superpixels with global optimization [4].

Additional research builds on top of these region-based
methods to correct errors in the segmentation. These input
segmentations can contain two types of errors. In asplit er-
ror, one neuron contains multiple labels. In amerge error,
two or more neurons receive the same label. This can be
done either using human proofreading [17, 18, 28] or au-
tomatically [41, 61]. In both cases, available methods are
pixel-based and do not include global biological constraints
into the decision making process. Our method can take as
input any existing segmentation pipeline.

3



Figure 3: Our framework uses both geometric and topological biological constraints for region merging. We (a) generate
a simpli�ed graph from the skeleton representation of the input segmentation, (b) train a classi�er to learn the edge weight
based on the shape of the segment connection, and (c) perform graph partitioning with acyclic constraints.

3.2. Method

For our proposed method (Fig. 3), from the input seg-
mentation we generate a graphG with nodesN and edgesE
with weightswe. The nodes correspond to labeled segments
from the input data with edges between merge candidates.
We propose the following three steps to formulate and then
partition the graph while obeying constraints from the un-
derlying biology. First, we only consider merging segments
based on a skeletonized representation of the input segmen-
tation (Fig. 3a). This enables us to reduce the number of
edges in the graph based on prior knowledge on the shape of
neuronal processes. Second, we train a convolutional neu-
ral network that learns biological constraints based on the
shapes of the input segmentation (Fig. 3b). This network
generates probabilities that segments belong to the same
neuron based only on the segmentations. An example of
one such learned constraint is that neurons have small turn-
ing radii (Fig. 5). Third, we partition the graph using a lifted
multicut formulation with additional acyclic constraints to
enforce global biological constraints (Fig. 3c). The lifted
multicut solution is globally consistent which we then aug-
ment to produce a tree-structured graph.

3.2.1 Skeleton-Based Graph Generation

Most region merging methods create a region graph by re-
moving small-sized segments and linking each pair of adja-
cent segments, which can still lead to a large graph size due
to the irregular shape of neural structures. We use a skele-
ton representation of the segmentation to reduce the graph
size with geometric constraints on the connectivity of two
adjacent segments to prune edges.

Our key observation is that if two segments belong to

Figure 4: Example skeletons (in black) extracted from seg-
ments using a variant of the TEASER algorithm [43]. These
skeletons not only capture the shape of the segmentation,
but also provide endpoints useful for region merging pro-
posals.

the same neuronal process, their skeleton end points should
satisfy certain geometric constraints. To extract the skeleton
from each segment, we use a variant [58] of the TEASER
algorithm [43]. Fig. 4 shows four examples of extracted
skeletons (in black). These skeletons consist of a sequence
of joints, locations that are locally a maximum distance
from the segment boundary, with line segments connecting
successive joints. We refer to joints that have only one con-
nected neighbor asendpoints. We �nd that approximately
70% of the segments that are erroneously split have nearby
endpoints (Fig. 6).

Two segments,s1 ands2, receive a corresponding edge if
the two following conditions hold. First, endpoints in either
s1 or s2 are withint low nm of any voxel in the other seg-
ment. Second, there are endpoints ins1 and ins2 that are
within thigh nm of each other. We store the midpoints be-
tween the two endpoints as the center of the potential merge
in the setSc. This algorithm produces a set of segments to

4




